ABSTRACT. Keywords: Mangifera indica L., Kaew mango, aroma components

Size: px
Start display at page:

Download "ABSTRACT. Keywords: Mangifera indica L., Kaew mango, aroma components"

Transcription

1 COMPARISON OF AROMA COMPONENTS IN THAI MANGO (CV. KAEW) FROM DIFFERENT EXTRACTION METHODS Montatip Yunchalad 1 ; Lozan0 2, Yves; and Dhuique-Mayer 2, Claudie. 1 IFRPD, Kasetsart University, PO Box 1043, Bangkhen, Bangkok '0903, Thailand 2 Cirad-Flhor, Cirad, PO Box 5035, Montpellier , France ABSTRACT Aroma components in Kaew mango were prelimipary identified. Aroma extracts obtained by means of simultaneous distillation-extraction, head space concentration and solvent extraction were analysed by capillary GC and GC-MS. Comparative qualitative chromatogram of different methods showed that almost aroma components were more or less sirnilar. However, the result revealed that the silmutaneous distillation extraction was found to be more suitable than the other two methods. It was also found that monoterpene hydrocarbon was the major aromatic chemical group which contributed about 83% of the total mango aroma components, in tj.ich the most abundant compound was a-terpinolene (70%) and a-car-3-ene (6%). Keywords: Mangifera indica L., Kaew mango, aroma components INTRODUCTION Mango (Mangifera indica L.) is the third importance fruit crop grown in Thailand next to the pineapple and rambutan. Thailand is unique in that mango is consumed in significant quantities as green fruit in addition to the universal eating of ITuit at ripe stage. Kaew mango being the dominant green cu!tivar (Mendoza, 1984) is widely utilised maiilly for cornrnerciaj production of salted pickling. The ripe Kaew mango is also rather cheap in comparison to the other ripe mango cuhivars. Hence, mango juice is made ITom ripe mango that showed the desirable color, and attractive flavour quality. There are some research informations in the field of fruit development, postharvest physiology and preservation of Thai mango (Mendosa, 1984; Phithakpol, 1985). But, data in this particular aroma of Thai mango cultivars are scanty in the literatures. Whereas the reports on the aroma compositions of different mangos cultivars, grown in various part of the world are available in plenty. Therefore preliminary study on the aroma components of Kaew mango should be carried out. There are many extraction techniques and analytical methods used for aroma qualifications. The selection of an appropiate extraction method is very important for both aroma qualification and quantification. Because any losses of important compounds cannot be made up in a later phase of the investigation (Maarse, 1982). Furthermore,each method has its own unique shortcoming, no single method will provide an aromatic profile truely representative of the flavour (Heath & Reineccius, 1986). The aim of this work was to extract the aroma components ITom Kaew mango by comparative extraction methods. The aroma extracts obtained were analysed by GC and GC-MS, then to compare the result obtained by each method of extraction for preliminary qualitative experiment. Key word: Mangifera indica L Kaew mango aroma component

2 MATERIALS AND METHODS Sample preparation Green mature Kaew mangoes (200 kg) were shipped by air ITeight ITom Bangkok, Thailand to the Cirad Flhor laboratory in Montpellier, France and immediately stored at 11 C for a week. After inducing maturation with C2H. for 24 h at 20 C, the mango fi-uitswere allowed to ripen for 5 days at ambient temperature. Then, the fully ripe mango obtained, were sorted for blemish, washed and pulped. The mango pulp was stored at -20 C for aroma extraction and analysis. Extraction of aroma component 1 : Simultaneous distillation -extraction (SDE) method A simultaneous steam distillation-extraction apparatus (modified Likens & Nickerson apparatus) was employed with the aqueous slurry of 20 g of Kaew mango pulp and 15 ml of pentane used for the flavour extraction simultaneously distillation. In the process for 2h, steam and solvent vapour were condensed together and separated in the V-tube section of the apparatus, after the steam volatile aroma are extracted continuously by pentane vapour: Each liquid phase was flowed back to their respective flasks. Combined extracts were dried over anhydrous Na2S04 then, concentrated under a mild stream of nitrogen gas to 250 ill prior to GC analysis. 2 : Solvent extraction method The simplest method of solvent extraction was carried out on the aqueous slurry of 50g Kaew mango pulp. The mixture obtained was extracted with 3 separate 90 ml of n-pentanedichloromethane mixture (2:I,v/v) in a stoppered erlenmayer flask. The solvent layer was separated ITomaqueous layer by placing the flask in an ultrasonic water bath for 10 min. The combined extracts were dried over anhydrous Na2S04 and then concentrated to 250 ψl under nitrogen gas flow prior to GC analysis. 3 : Headspace concentration method The headspace concentration of Kaew mango pulp (8 g) was conducted at 37 0 C in specially designed flask cormected to a condensing system. A constant flow of nitrogen gas at the rate of 40 ml/min was purged through the mango pulp. The aroma components of headspace carried along with the nitrogen flow were then trapped in a stainless steel tube containing Tenax- GC porous pol)1ticrfixed to the outlet holding over the condenser. The volatile aroma headspace of mango was collected for 30 mm. The Tenax tube was then transferred into the oven of Desorption Concentration Injection (DCI) apparatus built in the GC. The DCI was operated so the aroma components were analysed by capillary gas chromatography.

3 Gas chromatography (GC) The extracts were analysed by using Hewlett Packard 5890 Series II gas chromatography for direct injection and Girdel Series 3000 gas chromatography for DCI headspace analysis. Both were equipped ith FID. Fused silica capillary columns used were J&W, DB-Wax of m film thickness, 0.32 mm Ld and 30m, 60 m length, respectively. The temperature programme used was 60 C for 5 min, and then increased 2 C/min up to 200 C then held for 20 min. 1m: flow rate of carrier gas helium was I and 0.92 ml / min for 30 and 60 m column, respectively. Sample sizes were 6 III v.ith split ratio 1:50 for 30m column and 3f1l with split ratio 0.72 :17 for 60 m column. Injector and detector temperature were set at 220 C and 240 C, respectively. Aroma components from Tenax trap were directly transferred into another built in concentration trap. This second trap was held at -20 C by means of liquid nitrogen. The nitrogen gas at the flow rate of 30 mumin was used to transfer such components.. After connecting the concentration trap to the capillary column by rotating a gas valve, the trap was rapidly heated to 200 C «5sec). The desorbcd components were then directly flushed into the column and the oven heating programme of the GC was simultaneously started. Concentrated aroma components obtained from solvent extraction and SED methods were analysed by direct injection to Gc. Gas chromatography-mass spectrometry (GC-MS) Identification of all aroma components were achieved by means ofgc-ms using GC 8035 and Fisons Instrument Trio 1000 with an eletronic impact ionisation type(ei+). The operating conditions were as follow: mass scanning range, AMU; scanning time 0.85 sec; ionization voltage, 70 ev. The injected volume was lf1l with split ratio, 1:16. The other conditions for GC and desorption steps were the same as described above. The components in aroma extracts were separated by GC and identified by comparison relative retention time between chromatograms of Kaew mango pulp and known standards; then confirmed by mass spectrogram based on the Wiley data bank. Aroma components investigation RESULTS & DISCUSSION Table I lists the aroma components of Kaew mango pulp analysed by GC from the extracts of different extraction methods. Evaluation of chromatograms indicated that the major components included a-terpinolene, δ-car-3-ene, 3-hexen-1-ol, p-myrcene, limonene, β- phellandrene and p-selinene. The most abundant compound found in Kaew mango was α- terpinolene 70% (peak area of total aroma), which was also the major component in Sri Lanka mango, namely 32% in Willard mango and 35% in Parrot mango (MacLeod and Pieris, 1984) and 20%in Kensington mango (Macleod et ai., 1988). o-car-3-ene was the minor contributor (6%) in

4 Kaew mango. It became the most important aroma component ca 26% (unknown cultivar) in Venezualan mango (Macleod and Troconis, 1982) and also comprised 76.4% in Keitt mango and 60% in Tommy Atkins mango in Florida (MacLeod and Snyder, 1985). The following compounds, a-pinene, trans -caryophellene and (3-selinene were detected only in SDE and solvent extrction methods, but not detected in head space concentration method. The latter two compounds may be impacted in the mango pulp due to high MW and less volatility. However, most of aroma components existed in fully ripe Kaew mango were also found in other mango cultivars as reported in literature (MacLeod and Troconis, 1982; Macleod and Pieris. 1984; Macleod et ai., 1988; Macleod and Snyder, 1985). They varied to their relative amount in the aroma extracts.. In addition, some compound (as ester) was not even detected at all in Kaew mango, but Kensington mango contnduted ca 33% of ester (Macleod et ai., 1988). Effect of extraction method GC analysis of headspace aroma has shown less satisfactory result than in SDE method. Gas chromatograms of both methods were shown in Fig.I and Fig.II. ChromatOgram from headspace analysis showed more components in the lower molecular weight (MW) area; whereas higher MW components were shown in the chromatogram from SDE method. Most of the lower MW aroma components were in traces which could not be identified by GC analysis. In this case, a large amount of mango pulp should be employed to get more detailed aroma profiles in the chromatogram. Since the emulsion problem encountered in the solvent extraction method, only the extracts from the other two methods were further analysed by GC-MS. The accurate identification of GC separated components would be confirmed by this technique as shown in Table II and Table II!. The results were noticed that by headspace method obtained more various alcohol compounds (I-butano~ 2-hexen-I-oI, 2-pentan-1-o1 and 2-ethylhexan-I-oI). This one also provided more aldehyde and ketone compounds (I-phenylethanone, 4,4-hydroxymethylpentan-2- one and benzaldehyde). These compounds were not indicated by GC analysis, due to rather low relative amount of aroma components. thennally chemical changes in steam distillation. For SDE method, those compounds might be induced by Thus such compounds could not be found in mass spectrogram obtained from this method. Furthermore, some chemical class of aroma compounds were concluded as well in Table IV. The aroma components obtained from both extraction methods were indicated that monoterpene hydrocarbon existed as most abundant aroma components ca 83% of the total mango aroma,in which is reponed to be imponant to mango flavour for the characterisation of free volatile aroma of mango (MacLeod and Troconis, 1982; Engel and Tress!, 1983; Sakho et ai., 1985). It was noticed that sequisterpene hydrocarbon were only obtained by SDE method. The reason for this is that headspace technique may be less sensitivity to purge higher MW and more polarity aroma components.

5 CONCLUSION In summary, a fully ripe Kaew mango pulp were extracted and analysed the aroma components by GC and GC-MS. Investigation of different chromatograms indicated that almost all the aroma profiles were more or less similar in the three extraction methods. The abundant aroma was monoterpene hydrocarbon obtained 83% of mango constituents, in which the major compound wvas a-terpino1ene(70%) and 8-car-3-ene(6%). It is thus concluded that no relatively remarkable changes in the aroma profiles of Kaew mango were detected in those extraction methods described in this experiment. However, regarding the unique character and reproducibility of the extraction method, SED method provided the satisfactory reproducibility of aroma components extraction. [n addition, some reflux apparatus should be used for effective solvent removal with minimal loss of volatile aroma. Furthermore, sniffing system should be available to assess the sensory properties of every separated aroma component. REFERENCE Enge~ K. H. and Tressl, R Studies on the volatile components of two mango varieties. Journa[ of Agricultural Food Chemistry, 31 : Heath, H.B. and Reineccius, G F[avour chemistry and technology. Macmillan Publishers, Newyork. 442 p. Maarse, H Recent development in the methodology offla\'our research. [n International symposium on food flavour scientific coordination, J. Adda, and H. Richard, (eds). Paris. Dec. 8-10, 245 p. MacLeod, A. J. and Troconis, N. G Volatile flavour component of mango ITuit. Macleod, Macleod, Phytochemistry, 21 (10): A. J. and Pieris, N. M Comparison of the volatile components of some mango cultivars. Phytochemistry, 23 (2): A. J. and Snyder, C. H Volatile components of two cultivars of mango ITom Florida. Journa[ of Agricultural and Food Chemistry. 33 : MacLeod, A. I; MacLeod, G. and Snyder, C. H Volatile aroma constituents of mango (cv KENSINGTON). Phytochemistry, 27 (7): Mendoza JR, D. B. and Wills, R. B. H Mango: Fruit development, postharvest physiology and marketing in Asean. Malaysia: ASEAN Food Handling Bureau, III p. Olafsdottir, C. G.; Steineke, J. A. and Lindsay, R. C Quantitative performance of simple Tenax-GC adsorption method: for use in the analysis of aroma volatiles. Journal of Food Science, 50:

6 Pithakpo~ B., et a! Study of canned mango fleshjuice, pickle and conserve. ASEAN WORK SHOP ON FOOD TECHNOLOGY RESEARCH AND DEVELOPMENT. Sakho, M.; Crouzet, J.; Seck, S Volatile components of African mango. Journal of Food Science. 50: Table I Aroma components analysed by different e>.:traction methods\n Kaew mango Relative rctention Componcnt GC peak arcau(%) time 52.0 unknown I α-pinene Chloroform methylbenzene unknown δ-car-ene β-myrcene unknown α-tcrpinene Jirnonene β-phe1andrene hexen-I unknown cis-ocimene trans-ocimene unknown α-terpinolene hexano! hexene-I-ol

7 continued Relative retention Component GC peak area**(%) I unknown trans-caryophylene α-humulene unknown unknown β-selinene unknown ** I: SDE, 2 : Head-spaceconcentration,3: Solventextraction ** Means of3 replications Table II Aroma components identified qualitatively ttom simuhaneous distillation-extraction method in Kaew mango Retention Relative GC-MS time retention time Compound Confinnation α-pinene ***** δ-car-4-ene **** δ-car-3-ene... * β-myrcene α- terpinene limonene... * δ-pheuandrene hepten-I-01 ** I, 4-methylethyl benzene α-terpinolene ,2-methylethylbenzene * unknown trans -caryophyuene α-humulene... * β-chamigrene * β-selinene...*...* ethan-i-one unknown I,4-methylethenylbenzene -...

8 Table III Aroma components identified qualitatively from headspace concentration method in Kaew mango Retention Relative GC-MS time retention time Compound Confirmation hexane unknown dichloromethane ethanol.* chloroform α-pinene methylbenzene unknown δ-car-3-ene *.*.* I-butanol..**** β-myrcene α-terpinene * limonene.*** β-phellandrene * methylbutan-I hexen-I-ol cis-ocimene **** γ-terpinene..*** Irans-ocimene.*** ,3-rnethylethylbenzene...* penten-I-01 *.*.* I-hexanol ,4-hydroxyrnethyl pentan-2-one unknown hexen-I-01...* alcoholc6hi I,4-methylethenylbenzene ,2-dichlorobenzene...** acetic acid ethylhexan-I benzaldehyde C4H I-phenylethanone Irans-carveol..

9 Table IV The chemical class of aroma compound identified by different extraction methods. Compound I 2 Monoterpene hydrocarbon Sesquiterpene hydrocarbon Alcohol Total Others * I: simultaneous distillation-extraction 2: headspace concentration

RESOLUTION OIV-OENO ANALYSIS OF VOLATILE COMPOUNDS IN WINES BY GAS CHROMATOGRAPHY

RESOLUTION OIV-OENO ANALYSIS OF VOLATILE COMPOUNDS IN WINES BY GAS CHROMATOGRAPHY RESOLUTION OIV-OENO 553-2016 ANALYSIS OF VOLATILE COMPOUNDS IN WINES BY GAS CHROMATOGRAPHY THE GENERAL ASSEMBLY, In view of Article 2, paragraph 2 iv of the Agreement of 3 April 2001 establishing the International

More information

GAS-CHROMATOGRAPHIC ANALYSIS OF SOME VOLATILE CONGENERS IN DIFFERENT TYPES OF STRONG ALCOHOLIC FRUIT SPIRITS

GAS-CHROMATOGRAPHIC ANALYSIS OF SOME VOLATILE CONGENERS IN DIFFERENT TYPES OF STRONG ALCOHOLIC FRUIT SPIRITS GAS-CHROMATOGRAPHIC ANALYSIS OF SOME VOLATILE CONGENERS IN DIFFERENT TYPES OF STRONG ALCOHOLIC FRUIT SPIRITS Vesna Kostik 1*, Shaban Memeti 1, Biljana Bauer 2 1* Institute of Public Health of Republic

More information

CERTIFICATE OF ANALYSIS - GC PROFILING

CERTIFICATE OF ANALYSIS - GC PROFILING Date : March 29, 2018 CERTIFICATE OF ANALYSIS - GC PROFILING SAMPLE IDENTIFICATION Internal code : 18C20-ALZ3-1-CC Customer identification : Rosemary Type : Essential oil Source : Rosmarinus officinalis

More information

GC/MS BATCH NUMBER: TL0103

GC/MS BATCH NUMBER: TL0103 GC/MS BATCH NUMBER: TL0103 ESSENTIAL OIL: THYME LINALOOL BOTANICAL NAME: THYMUS VULGARIS ORIGIN: SPAIN KEY CONSTITUENTS PRESENT IN THIS BATCH OF THYME LINALOOL OIL % LINALOOL 72.9 TERPINEN-4-ol 5.5 γ-terpinene

More information

Emerging Applications

Emerging Applications Emerging Applications Headspace Analysis and Stripping of Volatile Compounds from Apple and Orange Juices Using SIFT-MS Introduction Differences in fruit varieties, fruit ripeness and processing techniques

More information

CERTIFICATE OF ANALYSIS - GC PROFILING

CERTIFICATE OF ANALYSIS - GC PROFILING Date : March 06, 2018 CERTIFICATE OF ANALYSIS - GC PROFILING SAMPLE IDENTIFICATION Internal code : 18B20-PLG15-1-CC Customer identification : Bergamot Type : Essential oil Source : Citrus aurantium var.

More information

Tyler Trent, SVOC Application Specialist; Teledyne Tekmar P a g e 1

Tyler Trent, SVOC Application Specialist; Teledyne Tekmar P a g e 1 Application Note Flavor and Aroma Profile of Hops Using FET-Headspace on the Teledyne Tekmar Versa with GC/MS Tyler Trent, SVOC Application Specialist; Teledyne Tekmar P a g e 1 Abstract To brewers and

More information

Analytical Method for Coumaphos (Targeted to agricultural, animal and fishery products)

Analytical Method for Coumaphos (Targeted to agricultural, animal and fishery products) Analytical Method for Coumaphos (Targeted to agricultural, animal and fishery products) The target compound to be determined is coumaphos. 1. Instruments Gas chromatograph-flame thermionic detector (GC-FTD)

More information

Somchai Rice 1, Jacek A. Koziel 1, Anne Fennell 2 1

Somchai Rice 1, Jacek A. Koziel 1, Anne Fennell 2 1 Determination of aroma compounds in red wines made from early and late harvest Frontenac and Marquette grapes using aroma dilution analysis and simultaneous multidimensional gas chromatography mass spectrometry

More information

GC/MS BATCH NUMBER: SB5100

GC/MS BATCH NUMBER: SB5100 GC/MS BATCH NUMBER: SB5100 ESSENTIAL OIL: SEA FENNEL BOTANICAL NAME: CRITHMUM MARITIMUM ORIGIN: GREECE KEY CONSTITUENTS PRESENT IN THIS BATCH OF SEA FENNEL OIL % γ-terpinene 26.3 LIMONENE 20.3 SABINENE

More information

CERTIFICATE OF ANALYSIS - GC PROFILING

CERTIFICATE OF ANALYSIS - GC PROFILING Date : March 07, 2018 CERTIFICATE OF ANALYSIS - GC PROFILING SAMPLE IDENTIFICATION Internal code : 18B20-PLG33-1-CC Customer identification : Camphor Type : Essential oil Source : Cinnamomum camphora Customer

More information

Table 1: Experimental conditions for the instrument acquisition method

Table 1: Experimental conditions for the instrument acquisition method PO-CON1702E The Comparison of HS-SPME and SPME Arrow Sampling Techniques Utilized to Characterize Volatiles in the Headspace of Wine over an Extended Period of Time Pittcon 2017 1430-11P Alan Owens, Michelle

More information

GC/MS BATCH NUMBER: CF0108

GC/MS BATCH NUMBER: CF0108 GC/MS BATCH NUMBER: CF0108 ESSENTIAL OIL: CLARY SAGE BOTANICAL NAME: SALVIA SCLAREA ORIGIN: FRANCE KEY CONSTITUENTS PRESENT IN THIS BATCH OF CLARY SAGE OIL % LINALYL ACETATE 57.6 LINALOOL 22.4 α-terpineol

More information

CHAPTER 8. Sample Laboratory Experiments

CHAPTER 8. Sample Laboratory Experiments CHAPTER 8 Sample Laboratory Experiments 8.a Analytical Experiments without an External Reference Standard; Conformational Identification without Quantification. Jake Ginsbach CAUTION: Do not repeat this

More information

Extraction of Essential Oil from Citrus junos Peel using Supercritical Carbon Dioxide

Extraction of Essential Oil from Citrus junos Peel using Supercritical Carbon Dioxide Extraction of Essential Oil from Citrus junos Peel using Supercritical Carbon Dioxide Munehiro Hoshino 1,2, Masahiro Tanaka 2, Mitsuru Sasaki 1, Motonobu Goto 1 1 Graduate School of Science and Technology,

More information

GC/MS BATCH NUMBER: L40103

GC/MS BATCH NUMBER: L40103 GC/MS BATCH NUMBER: L40103 ESSENTIAL OIL: LAVENDER BOTANICAL NAME: LAVANDULA ANGUSTIFOLIA ORIGIN: BULGARIA KEY CONSTITUENTS PRESENT IN THIS BATCH OF LAVENDER OIL % LINALOOL 36.6 LINALYL ACETATE 28.3 Trans-β-FARNESENE

More information

GC/MS BATCH NUMBER: CC0104

GC/MS BATCH NUMBER: CC0104 GC/MS BATCH NUMBER: CC0104 ESSENTIAL OIL: CINNAMON BARK BOTANICAL NAME: CINNAMOMUM VERUM ORIGIN: SRI LANKA KEY CONSTITUENTS PRESENT IN THIS BATCH OF CINNAMON BARK OIL % (E)-CINNAMALDEHYDE 72.2 EUGENOL

More information

Journal of Chemical and Pharmaceutical Research, 2017, 9(9): Research Article

Journal of Chemical and Pharmaceutical Research, 2017, 9(9): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2017, 9(9):135-139 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 The Identification and Quantitation of Thymol and

More information

CERTIFICATE OF ANALYSIS - GC PROFILING

CERTIFICATE OF ANALYSIS - GC PROFILING Date : March 07, 2018 CERTIFICATE OF ANALYSIS - GC PROFILING SAMPLE IDENTIFICATION Internal code : 18B20-PLG34-1-CC Customer identification : Citronella Type : Essential oil Source : Cymbopogon winterianus

More information

CERTIFICATE OF ANALYSIS - GC PROFILING

CERTIFICATE OF ANALYSIS - GC PROFILING Date : March 07, 2018 CERTIFICATE OF ANALYSIS - GC PROFILING SAMPLE IDENTIFICATION Internal code : 18B20-PLG30-1-CC Customer identification : Anise Star Type : Essential oil Source : Illicium verum Customer

More information

GC/MS BATCH NUMBER: H90101

GC/MS BATCH NUMBER: H90101 GC/MS BATCH NUMBER: H90101 ESSENTIAL OIL: HELICHRYSUM ITALICUM ORGANIC BOTANICAL NAME: HELICHRYSUM ITALICUM ORIGIN: FRANCE KEY CONSTITUENTS PRESENT IN THIS BATCH OF HELICHRYSUM ITALICUM ORGANIC OIL % α-pinene

More information

GC/MS BATCH NUMBER: B50105

GC/MS BATCH NUMBER: B50105 GC/MS BATCH NUMBER: B50105 ESSENTIAL OIL: BLUE TANSY BOTANICAL NAME: TANACETUM ANNUUM ORIGIN: MOROCCO KEY CONSTITUENTS PRESENT IN THIS BATCH OF BLUE TANSY OIL SABINENE 25.6 CAMPHOR 11.2 % Comments from

More information

CERTIFICATE OF ANALYSIS - GC PROFILING

CERTIFICATE OF ANALYSIS - GC PROFILING Date : May 22, 2018 CERTIFICATE OF ANALYSIS - GC PROFILING SAMPLE IDENTIFICATION Internal code : 18E08-NAD8-1-CC Customer identification : Lavender Oil - Bulgarian - R122257-01 Type : Essential oil Source

More information

GC/MS BATCH NUMBER: LM0100

GC/MS BATCH NUMBER: LM0100 GC/MS BATCH NUMBER: LM0100 ESSENTIAL OIL: LAVENDER FINE ORGANIC BOTANICAL NAME: LAVANDULA ANGUSTIFOLIA ORIGIN: FRANCE KEY CONSTITUENTS PRESENT IN THIS BATCH OF LAVENDER FINE ORGANIC OIL % LINALYL ACETATE

More information

GC/MS BATCH NUMBER: E10106

GC/MS BATCH NUMBER: E10106 GC/MS BATCH NUMBER: E10106 ESSENTIAL OIL: EUCALYPTUS LEMON ORGANIC BOTANICAL NAME: EUCALYPTUS CITIODORA ORIGIN: MADAGASCAR KEY CONSTITUENTS PRESENT IN THIS BATCH OF EUCALYPTUS LEMON ORGANIC OIL % CITRONELLAL

More information

GC/MS BATCH NUMBER: O50106

GC/MS BATCH NUMBER: O50106 GC/MS BATCH NUMBER: O50106 ESSENTIAL OIL: OREGANO ORGANIC BOTANICAL NAME: ORIGANUM VULGARE ORIGIN: MERSIN / TURKEY KEY CONSTITUENTS PRESENT IN THIS BATCH OF OREGANO ORGANIC OIL % CARVACROL 67.1 γ-terpinene

More information

GC/MS BATCH NUMBER: L50109

GC/MS BATCH NUMBER: L50109 GC/MS BATCH NUMBER: L50109 ESSENTIAL OIL: LAVENDER ORGANIC BOTANICAL NAME: LAVANDULA ANGUSTIFOLIA ORIGIN: BULGARIA KEY CONSTITUENTS PRESENT IN THIS BATCH OF LAVENDER ORGANIC OIL % LINALOOL 33.7 LINALYL

More information

Essential Validation Services

Essential Validation Services 1 Sample: Client: Sample: Batch # Artisan Aromatics CAS Number 8008-79-5 Type: Spearmint (Mentha Spicata) Spearmint Sample Report Essential Oil Conclusion: No adulterants, diluents, or contaminants were

More information

GC/MS BATCH NUMBER: PJ0102

GC/MS BATCH NUMBER: PJ0102 GC/MS BATCH NUMBER: PJ0102 ESSENTIAL OIL: PALO SANTO BOTANICAL NAME: BURSERA GRAVEOLENS ORIGIN: ECUADOR KEY CONSTITUENTS PRESENT IN THIS BATCH OF PALO SANTO OIL % LIMONENE 65.6 MENTHOFURAN 13.5 α-terpineol

More information

Analysis of Volatile Compounds of Jasminum nitidum [Acc.JN.1] Flowers

Analysis of Volatile Compounds of Jasminum nitidum [Acc.JN.1] Flowers International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 11 (2017) pp. 5411-5418 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.611.517

More information

Profiling of Aroma Components in Wine Using a Novel Hybrid GC/MS/MS System

Profiling of Aroma Components in Wine Using a Novel Hybrid GC/MS/MS System APPLICATION NOTE Gas Chromatography/ Mass Spectrometry Authors: Sharanya Reddy Thomas Dillon PerkinElmer, Inc. Shelton, CT Profiling of Aroma Components in Wine Using a Novel Hybrid GC/MS/MS System Introduction

More information

Alexis St-Gelais, M. Sc., chimiste

Alexis St-Gelais, M. Sc., chimiste Date : January 16, 2018 SAMPLE IDENTIFICATION Internal code : 18A12-HBN2-1-CC Customer identification : Frankincense Oil Carterii - #Lot: HBNO-170004420 Type : Essential oil Source : Boswellia carterii

More information

GC/MS BATCH NUMBER: EG0101

GC/MS BATCH NUMBER: EG0101 GC/MS BATCH NUMBER: EG0101 ESSENTIAL OIL: EUCALYPTUS DIVES BOTANICAL NAME: EUCALYPTUS DIVES ORIGIN: KEY CONSTITUENTS PRESENT IN THIS BATCH OF EUCALYPTUS DIVES OIL % PIPERITONE 51.0 α-phellandrene 19.9

More information

GC/MS BATCH NUMBER: CD0103

GC/MS BATCH NUMBER: CD0103 GC/MS BATCH NUMBER: CD0103 ESSENTIAL OIL: CITRONELLA ORGANIC BOTANICAL NAME: CYMBOPOGON WINTERIANUS ORIGIN: PARAGUAY KEY CONSTITUENTS PRESENT IN THIS BATCH OF CITRONELLA ORGANIC OIL % CITRONELLAL 34.2

More information

GC/MS BATCH NUMBER: PJ0103

GC/MS BATCH NUMBER: PJ0103 GC/MS BATCH NUMBER: PJ0103 ESSENTIAL OIL: PALO SANTO BOTANICAL NAME: BURSERA GRAVEOLENS ORIGIN: PERU KEY CONSTITUENTS PRESENT IN THIS BATCH OF PALO SANTO OIL % LIMONENE 66.0 MENTHOFURAN 12.2 α-terpineol

More information

Essential Validation Services

Essential Validation Services 1 Sample: Client: Sample: Batch # CAS Number Type: Natural Sourcing Peruvian Myrtle (Luma chequen) PIU100718 Essential Oil Conclusion: No adulterants, diluents, or contaminants were detected via this method.

More information

GC/MS BATCH NUMBER: S30103

GC/MS BATCH NUMBER: S30103 GC/MS BATCH NUMBER: S30103 ESSENTIAL OIL: SPEARMINT BOTANICAL NAME: MENTHA SPICATA ORIGIN: USA KEY CONSTITUENTS PRESENT IN THIS BATCH OF SPEARMINT OIL % CARVONE + PIPERITONE 66.6 LIMONENE 10.0 MYRCENE

More information

No adulterants, diluents, or contaminants were detected via this method. Total Italidione level 4-5%.

No adulterants, diluents, or contaminants were detected via this method. Total Italidione level 4-5%. 1 Sample: Client: Sample: Brambleberry Batch # 12777 CAS Number 8023-95-8 Type: Helichrysum Italicum (Helichrysum Italicum) Essential Oil Conclusion: No adulterants, diluents, or contaminants were detected

More information

GC/MS BATCH NUMBER: H20105

GC/MS BATCH NUMBER: H20105 GC/MS BATCH NUMBER: H20105 ESSENTIAL OIL: HELICHRYSUM ITALICUM BOTANICAL NAME: HELICHRYSUM ITALICUM ORIGIN: CROATIA KEY CONSTITUENTS PRESENT IN THIS BATCH OF HELICHRYSUM ITALICUM OIL % α-pinene 25.4 γ-curcumene

More information

GC/MS BATCH NUMBER: F80104

GC/MS BATCH NUMBER: F80104 GC/MS BATCH NUMBER: F80104 ESSENTIAL OIL: FRANKINCENSE FREREANA BOTANICAL NAME: BOSWELLIA FREREANA ORIGIN: SOMALIA KEY CONSTITUENTS PRESENT IN THIS BATCH OF FRANKINCENSE FREREANA OIL % α-thujene 48.5 α-pinene

More information

Analytical Report. Volatile Organic Compounds Profile by GC-MS in Clove E-liquid Flavor Concentrate. PO Box 2624 Woodinville, WA 98072

Analytical Report. Volatile Organic Compounds Profile by GC-MS in Clove E-liquid Flavor Concentrate. PO Box 2624 Woodinville, WA 98072 Millis Scientific, Inc 6400 Baltimore National Pike #201 Baltimore MD 21228 Telephone: 877-844-2635 Email: info@millisscientific.com Title Report No. Analytical Report Volatile Organic Compounds Profile

More information

Quantitative Measurement of Sesquiterpenes in Various Ginger Samples by GC-MS/MS

Quantitative Measurement of Sesquiterpenes in Various Ginger Samples by GC-MS/MS Human Journals Research Article April 2015 Vol.:3, Issue:1 All rights are reserved by Sreeraj Gopi et al. Quantitative Measurement of Sesquiterpenes in Various Ginger Samples by GC-MS/MS Keywords: ginger,

More information

SAMPLE IDENTIFICATION ANALYSIS. Date : December 1, 2016

SAMPLE IDENTIFICATION ANALYSIS. Date : December 1, 2016 Date : December 1, 2016 SAMPLE IDENTIFICATION Internal code : 16K24-TOB4-1-DM Customer identification : Helichrysum Type : Essential oil Source : Helichrysum italicum Customer : Real Oil LLC ANALYSIS Method

More information

Analytical Report. Volatile Organic Compounds Profile by GC-MS in Cupcake Batter Flavor Concentrate

Analytical Report. Volatile Organic Compounds Profile by GC-MS in Cupcake Batter Flavor Concentrate Millis Scientific, Inc 6400 Baltimore National Pike #201 Baltimore MD 21228 Telephone: 877-844-2635 Email: info@millisscientific.com Title Analytical Report Report No. 042216-001-6 Issue Date April 22,

More information

GC/MS BATCH NUMBER: TL0101

GC/MS BATCH NUMBER: TL0101 GC/MS BATCH NUMBER: TL0101 ESSENTIAL OIL: THYME LINALOOL BOTANICAL NAME: THYME LINALOOL ORIGIN: SPAIN KEY CONSTITUENTS PRESENT IN THIS BATCH OF THYME LINALOOL OIL % LINALOOL 46.0 TERPINEN-4-ol 11.6 γ-terpinene

More information

Essential Validation Services

Essential Validation Services 1 Sample: Client: Sample: Batch # Floracopia GPGROSVB01 CAS Number 8000-25-7 Type: Essential Oil Conclusion: No adulterants, diluents, or contaminants were detected via this method. This oil meets the

More information

GC/MS BATCH NUMBER: BH0102

GC/MS BATCH NUMBER: BH0102 GC/MS BATCH NUMBER: BH0102 ESSENTIAL OIL: BLUE TANSY ORGANIC BOTANICAL NAME: TANACETUM ANNUUM ORIGIN: MOROCCO KEY CONSTITUENTS PRESENT IN THIS BATCH OF BLUE TANSY ORGANIC OIL SABINENE 19.3 1,9-DIHYDROCHAMAZULENE

More information

GC/MS BATCH NUMBER: R40106

GC/MS BATCH NUMBER: R40106 GC/MS BATCH NUMBER: R40106 ESSENTIAL OIL: ROSEMARY BOTANICAL NAME: ROSMARINUS OFFICINALIS ORIGIN: TUNISIA KEY CONSTITUENTS PRESENT IN THIS BATCH OF ROSEMARY OIL % 1,8-CINEOLE + LIMONENE 45.5 α-pinene 13.2

More information

GC/MS BATCH NUMBER: TK0105

GC/MS BATCH NUMBER: TK0105 GC/MS BATCH NUMBER: TK0105 ESSENTIAL OIL: TURMERIC ORGANIC C02 BOTANICAL NAME: CURCUMA LONGA ORIGIN: INDIA KEY CONSTITUENTS PRESENT IN THIS BATCH OF TURMERIC ORGANIC C02 OIL % β-turmerone 21.6 GERMACRONE

More information

Comprehensive analysis of coffee bean extracts by GC GC TOF MS

Comprehensive analysis of coffee bean extracts by GC GC TOF MS Application Released: January 6 Application ote Comprehensive analysis of coffee bean extracts by GC GC TF MS Summary This Application ote shows that BenchTF time-of-flight mass spectrometers, in conjunction

More information

Customer: Hemp Traders Type: Oil Instrument: UPLC-PDA-MS Submitted: 06/20/17

Customer: Hemp Traders Type: Oil Instrument: UPLC-PDA-MS Submitted: 06/20/17 Certificate of Analysis Essential Oil Sample ID: BK29099-4 Customer: Hemp Traders Type: Oil Instrument: UPLC-PDA-MS Submitted: 06/20/17 Test Site: Berkeley, CA Test: Standard Terpenes Method: SOP-024 Reported:

More information

No adulterants, diluents, or contaminants were detected via this method.

No adulterants, diluents, or contaminants were detected via this method. 1 Sample: Client: Sample: Brambleberry Batch # 10390662 CAS Number 8007-08-7 Type: Ginger (Zingiber officinalis) Essential Oil Conclusion: No adulterants, diluents, or contaminants were detected via this

More information

CERTIFICATE OF ANALYSIS - GC PROFILING

CERTIFICATE OF ANALYSIS - GC PROFILING Date : March 29, 2018 CERTIFICATE OF ANALYSIS - GC PROFILING SAMPLE IDENTIFICATION Internal code : 18C20-ALZ1-1-CC Customer identification : Tee Tree Type : Essential oil Source : Melaleuca alternifolia

More information

GC/MS BATCH NUMBER: H20103

GC/MS BATCH NUMBER: H20103 GC/MS BATCH NUMBER: H20103 ESSENTIAL OIL: HELICHRYSUM ITALICUM BOTANICAL NAME: HELICHRYSUM ITALICUM ORIGIN: ITALY KEY CONSTITUENTS PRESENT IN THIS BATCH OF HELICHRYSUM ITALICUM OIL % α-pinene 34.1 NERYL

More information

GC/MS BATCH NUMBER: S40102

GC/MS BATCH NUMBER: S40102 GC/MS BATCH NUMBER: S40102 ESSENTIAL OIL: ORGANIC SPEARMINT BOTANICAL NAME: MENTHA SPICATA ORIGIN: INDIA KEY CONSTITUENTS PRESENT IN THIS BATCH OF SPEARMINT ORGANIC OIL % CARVONE 61.2 LIMONENE 20.5 cis-dihydrocarvone

More information

CERTIFICATE OF ANALYSIS - GC PROFILING

CERTIFICATE OF ANALYSIS - GC PROFILING Date : April 24, 2018 CERTIFICATE OF ANALYSIS - GC PROFILING SAMPLE IDENTIFICATION Internal code : 18D17-HBN9-1-CC Customer identification : Peppermint Oil - India - 98182 Type : Essential oil Source :

More information

CERTIFICATE OF ANALYSIS - GC PROFILING

CERTIFICATE OF ANALYSIS - GC PROFILING Date : February 23, 2018 CERTIFICATE OF ANALYSIS - GC PROFILING SAMPLE IDENTIFICATION Internal code : 18B20-PLG2-1-CC Customer identification : Lavender - Bulgarian Type : Essential oil Source : Lavandula

More information

One class classification based authentication of peanut oils by fatty

One class classification based authentication of peanut oils by fatty Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 One class classification based authentication of peanut oils by fatty acid profiles Liangxiao

More information

CERTIFICATE OF ANALYSIS - GC PROFILING

CERTIFICATE OF ANALYSIS - GC PROFILING Date : February 23, 2018 CERTIFICATE OF ANALYSIS - GC PROFILING SAMPLE IDENTIFICATION Internal code : 18B20-PLG4-1-CC Customer identification : Peppermint Type : Essential oil Source : Mentha x piperita

More information

CERTIFICATE OF ANALYSIS GC PROFILING

CERTIFICATE OF ANALYSIS GC PROFILING Date : May 23, 2018 CERTIFICATE OF ANALYSIS GC PROFILING SAMPLE IDENTIFICATION Internal code : 18E09-FWM2-1-CC Customer identification : Frankincense - Somalia Type : Essential oil Source : Boswellia carterii

More information

Alexis St-Gelais, M. Sc., chimiste

Alexis St-Gelais, M. Sc., chimiste Date : April 28, 2016 SAMPLE IDENTIFICATION Internal code : 16D12-GUR6-1-HM Customer identification : Invigorate - 7318 Type : Essential oil Source : Blend Customer : GuruNanda LLC. ANALYSIS Method : PC-PA-001-15E06,

More information

Essential Validation Services

Essential Validation Services 1 Sample: Client: Sample: Batch # Artisan Aromatics CAS Number 8006-90-4 Type: Peppermint (Mentha x piperita) Peppermint Sample Report Essential Oil Conclusion: No adulterants, diluents, or contaminants

More information

Analysis of Volatile Compounds from the Concrete of Jasminum multiflorum Flowers

Analysis of Volatile Compounds from the Concrete of Jasminum multiflorum Flowers International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 11 (2017) pp. 2229-2233 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.611.264

More information

GC/MS BATCH NUMBER: CF0106

GC/MS BATCH NUMBER: CF0106 GC/MS BATCH NUMBER: CF0106 ESSENTIAL OIL: CLARY SAGE BOTANICAL NAME: SALVIA SCLAREA ORIGIN: FRANCE KEY CONSTITUENTS PRESENT IN THIS BATCH OF CLARY SAGE OIL % LINALYL ACETATE 56.7 LINALOOL 22.4 α-terpineol

More information

GC/MS BATCH NUMBER: CA0101

GC/MS BATCH NUMBER: CA0101 GC/MS BATCH NUMBER: CA0101 ESSENTIAL OIL: CINNAMON CASSIA BOTANICAL NAME: CINNAMOMUM CASSIA ORIGIN: CHINA KEY CONSTITUENTS PRESENT IN THIS BATCH OF CINNAMON OIL % (E)-CINNAMALDEHYDE 79.1 (E)-O-METHOXYCINNAMALDEHYDE

More information

GC/MS BATCH NUMBER: CE0104

GC/MS BATCH NUMBER: CE0104 GC/MS BATCH NUMBER: CE0104 ESSENTIAL OIL: CITRONELLA BOTANICAL NAME: CYMBOPOGON WINTERIANUS ORIGIN: CHINA KEY CONSTITUENTS PRESENT IN THIS BATCH OF CITRONELLA OIL % CITRONELLAL 36.6 GERANIOL 20.6 CITRONELLOL

More information

GC/MS BATCH NUMBER: P40106

GC/MS BATCH NUMBER: P40106 GC/MS BATCH NUMBER: P40106 ESSENTIAL OIL: PEPPERMINT ORGANIC BOTANICAL NAME: MENTHA X PIPERITA ORIGIN: INDIA KEY CONSTITUENTS PRESENT IN THIS BATCH OF PEPPERMINT ORGANIC OIL % MENTHOL 33.8 MENTHONE 25.0

More information

Essential Validation Services

Essential Validation Services 1 Sample: Client: Sample: Enfleurage White Frankincense Sacra (Boswellia Sacra) Batch # WF 10-26-2017 Cas Number 89957-98-2 Type: Essential Oil Conclusion: No adulterants, diluents, or contaminants were

More information

GC/MS BATCH NUMBER: R10104

GC/MS BATCH NUMBER: R10104 GC/MS BATCH NUMBER: R10104 ESSENTIAL OIL: RAVENSARA BOTANICAL NAME: RAVENSARA AROMATICA ORIGIN: MADAGASCAR KEY CONSTITUENTS PRESENT IN THIS BATCH OF RAVENSARA OIL SABINENE 14.0 % Comments from Robert Tisserand:

More information

GC/MS BATCH NUMBER: F30105

GC/MS BATCH NUMBER: F30105 GC/MS BATCH NUMBER: F30105 ESSENTIAL OIL: FRANKINCENSE CARTERI BOTANICAL NAME: BOSWELLIA CARTERII ORIGIN: SOMALIA KEY CONSTITUENTS PRESENT IN THIS BATCH OF FRANKINCENSE CARTERI OIL % α-pinene 32.4 LIMONENE

More information

Analytical Report. Table 1: Target compound levels. Concentration units are ppm or N/D, not detected.

Analytical Report. Table 1: Target compound levels. Concentration units are ppm or N/D, not detected. 03/20/17 Report 032017-13 Page 1 of 4 Millis Scientific, Inc 6400 Baltimore National Pike #201 Baltimore MD 21228 Telephone: 877-844-2635 Email: info@millisscientific.com Analytical Report Title Vicinal

More information

GC/MS BATCH NUMBER: CL0106

GC/MS BATCH NUMBER: CL0106 GC/MS BATCH NUMBER: CL0106 ESSENTIAL OIL: CYPRESS BOTANICAL NAME: CUPRESSUS SEMPERVIRENS ORIGIN: SPAIN KEY CONSTITUENTS PRESENT IN THIS BATCH OF CYPRESS OIL % α-pinene 52.7 Δ3-CARENE 19.7 LIMONENE 4.7

More information

No adulterants, diluents, or contaminants were detected via this method. Conforms to 10/12 Iso Norms

No adulterants, diluents, or contaminants were detected via this method. Conforms to 10/12 Iso Norms 1 Sample: Client: Sample: Brambleberry Batch # 10188501 CAS Number 8000-28-0 Type: Country Lavender (Lavandula angustifolia) Essential Oil France Conclusion: No adulterants, diluents, or contaminants were

More information

Somchai Rice 1, Jacek A. Koziel 1, Jennie Savits 2,3, Murlidhar Dharmadhikari 2,3 1 Agricultural and Biosystems Engineering, Iowa State University

Somchai Rice 1, Jacek A. Koziel 1, Jennie Savits 2,3, Murlidhar Dharmadhikari 2,3 1 Agricultural and Biosystems Engineering, Iowa State University Pre-fermentation skin contact temperatures and their impact on aroma compounds in white wines made from La Crescent grapes using aroma dilution analysis and simultaneous multidimensional gas chromatography

More information

GC/MS BATCH NUMBER: LU0100

GC/MS BATCH NUMBER: LU0100 GC/MS BATCH NUMBER: LU0100 ESSENTIAL OIL: LEMON TEA TREE BOTANICAL NAME: LEPTOSPERMUM PETERSONII ORIGIN: AUSTRALIA KEY CONSTITUENTS PRESENT IN THIS BATCH OF LEMON TEA TREE OIL % Geranial 39.39 Neral 27.78

More information

Agilent J&W DB-624 Ultra Inert Capillary Column Screens Distilled Spirits by GC/MS Static Headspace

Agilent J&W DB-624 Ultra Inert Capillary Column Screens Distilled Spirits by GC/MS Static Headspace Agilent J&W DB-6 Ultra Inert Capillary Column Screens Distilled Spirits by GC/MS Static Headspace Application Note Food Testing & Agriculture Author Ken Lynam Agilent Technologies, Inc. Abstract This work

More information

GC/MS BATCH NUMBER: CLO105

GC/MS BATCH NUMBER: CLO105 GC/MS BATCH NUMBER: CLO105 ESSENTIAL OIL: CYPRESS BOTANICAL NAME: CUPRESSUS SEMPERVIRENS ORIGIN: SPAIN KEY CONSTITUENTS PRESENT IN THIS BATCH OF CYPRESS OIL % α-pinene 51.0 Δ3-CARENE 24.6 TERPINOLENE 3.4

More information

Solid Phase Micro Extraction of Flavor Compounds in Beer

Solid Phase Micro Extraction of Flavor Compounds in Beer Solid Phase Micro Extraction of Flavor Compounds in Beer ANNE JUREK Reducing Carryover in Environmental Water Samples Application Note Environmental Author Anne Jurek Applications Chemist EST Analytical

More information

GC/MS BATCH NUMBER: P40105

GC/MS BATCH NUMBER: P40105 GC/MS BATCH NUMBER: P40105 ESSENTIAL OIL: PEPPERMINT ORGANIC BOTANICAL NAME: MENTHA X PIPERITA ORIGIN: INDIA KEY CONSTITUENTS PRESENT IN THIS BATCH OF PEPPERMINT ORGANIC OIL % MENTHOL 43.8 MENTHONE 22.8

More information

Novel Closed System Extraction of Essential Oil: Impact on Yield and Physical Characterization

Novel Closed System Extraction of Essential Oil: Impact on Yield and Physical Characterization 2014 4th International Conference on Biotechnology and Environment Management IPCBEE vol.75 (2014) (2014) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2014. V75. 7 Novel Closed System Extraction of Essential

More information

GC/MS BATCH NUMBER: Y50101

GC/MS BATCH NUMBER: Y50101 GC/MS BATCH NUMBER: Y50101 ESSENTIAL OIL: BLUE YARROW ORGAINC BOTANICAL NAME: ACHILLEA MILLEFOLIUM ORIGIN: BULGARIA KEY CONSTITUENTS PRESENT IN THIS BATCH OF BLUE YARROW ORGANIC OIL % SABINENE 12.4 GERMACRENE

More information

THE BREWING VALUE OF HOPS HOP & BREW SCHOOL A UG 29 S EPT 1, 2017, Y AKIMA

THE BREWING VALUE OF HOPS HOP & BREW SCHOOL A UG 29 S EPT 1, 2017, Y AKIMA THE BREWING VALUE OF HOPS HOP & BREW SCHOOL A UG 29 S EPT 1, 2017, Y AKIMA Introduction Hop research at De Proefbrouwerij The brewing value of hops Analysis Case studies Summary Take home messages 2 INTRODUCTION

More information

No adulterants, diluents, or contaminants were detected via this method.

No adulterants, diluents, or contaminants were detected via this method. 1 Sample: Client: Sample: 21 Drops Batch # 0614/1 CAS Number 8006-81-3 Type: Essential Oil Conclusion: No adulterants, diluents, or contaminants were detected via this method. X Validated By: Phone: 317-361-5044

More information

Application Note: Analysis of Melamine in Milk (updated: 04/17/09) Product: DPX-CX (1 ml or 5 ml) Page 1 of 5 INTRODUCTION

Application Note: Analysis of Melamine in Milk (updated: 04/17/09) Product: DPX-CX (1 ml or 5 ml) Page 1 of 5 INTRODUCTION Page 1 of 5 Application Note: Analysis of Melamine in Milk (updated: 04/17/09) Product: DPX-CX (1 ml or 5 ml) INTRODUCTION There has been great interest recently for detecting melamine in food samples

More information

Identification of Adulteration or origins of whisky and alcohol with the Electronic Nose

Identification of Adulteration or origins of whisky and alcohol with the Electronic Nose Identification of Adulteration or origins of whisky and alcohol with the Electronic Nose Dr Vincent Schmitt, Alpha M.O.S AMERICA schmitt@alpha-mos.com www.alpha-mos.com Alpha M.O.S. Eastern Analytical

More information

GC/MS BATCH NUMBER: PJ0100

GC/MS BATCH NUMBER: PJ0100 GC/MS BATCH NUMBER: PJ0100 ESSENTIAL OIL: PALO SANTO BOTANICAL NAME: BURSERA GRAVEOLENS ORIGIN: ECUADOR KEY CONSTITUENTS PRESENT IN THIS BATCH OF PALO SANTO OIL % LIMONENE 67.3 α-terpineol 9.6 MENTHOFURAN

More information

GC/MS BATCH NUMBER: G40105

GC/MS BATCH NUMBER: G40105 GC/MS BATCH NUMBER: G40105 ESSENTIAL OIL: GINGER ROOT C02 BOTANICAL NAME: ZINGIBER OFFICIANALIS ORIGIN: NIGERIA KEY CONSTITUENTS PRESENT IN THIS BATCH OF GINGER ROOT C02 OIL α-zingiberene 11.0 [6]-GINGEROL

More information

Zoe Grosser, Vinson Leung, Jim Fenster, Brian LaBrecque Horizon Technology, Inc., Salem, NH USA

Zoe Grosser, Vinson Leung, Jim Fenster, Brian LaBrecque Horizon Technology, Inc., Salem, NH USA Zoe Grosser, Vinson Leung, Jim Fenster, Brian LaBrecque Horizon Technology, Inc., Salem, NH USA To develop an automated SPE method for the extraction of 20 organochlorine pesticides using an established,

More information

Essential Validation Services

Essential Validation Services 1 Sample: Client: Sample: Batch # CAS Number Type: Natural Sourcing Palo Santo (Bursera graveolens) PIU100718 Essential Oil Conclusion: No adulterants, diluents, or contaminants were detected via this

More information

Comparison of Supercritical Fluid Extraction with Steam Distillation for the Extraction of Bay Oil from Bay (Pimenta Racemosa) Leaves

Comparison of Supercritical Fluid Extraction with Steam Distillation for the Extraction of Bay Oil from Bay (Pimenta Racemosa) Leaves International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 5 Issue 1 January 2016 PP.51-55 Comparison of Supercritical Fluid Extraction with Steam Distillation

More information

The Benefits of GC/MS Coupled with a Headspace Trap to Monitor Volatile Organic Compounds in the Production of Beer

The Benefits of GC/MS Coupled with a Headspace Trap to Monitor Volatile Organic Compounds in the Production of Beer 24 The Benefits of GC/MS Coupled with a Headspace Trap to Monitor Volatile Organic Compounds in the Production of Beer by Lee Marotta 1 and Robert Thomas 2 1 GC and GC MS Senior Application Scientist,

More information

Fast Analysis of Smoke Taint Compounds in Wine with an Agilent J&W DB-HeavyWax GC Column

Fast Analysis of Smoke Taint Compounds in Wine with an Agilent J&W DB-HeavyWax GC Column Application Note Flavors and Fragrances Fast Analysis of Smoke Taint Compounds in Wine with an Agilent J&W DB-HeavyWax GC Column Author Vanessa Abercrombie Agilent Technologies, Inc. Abstract The analysis

More information

Determination of Pesticides in Coffee with QuEChERS Extraction and Silica Gel SPE Cleanup

Determination of Pesticides in Coffee with QuEChERS Extraction and Silica Gel SPE Cleanup Determination of Pesticides in Coffee with QuEChERS Extraction and Silica Gel SPE Cleanup UCT Part Numbers ECMSSC50CT-MP 50-mL centrifuge tube and Mylar pouch containing 4000 mg MgSO4 and 1000 mg NaCl

More information

Methanol (Resolution Oeno 377/2009, Revised by OIV-OENO 480/2014)

Methanol (Resolution Oeno 377/2009, Revised by OIV-OENO 480/2014) Method OIV-MA-AS312-03A Type II method (Resolution Oeno 377/2009, Revised by OIV-OENO 480/2014) 1. Scope of application This method is applicable to the determination of methanol in wine for concentrations

More information

GC/MS BATCH NUMBER: W10104

GC/MS BATCH NUMBER: W10104 GC/MS BATCH NUMBER: W10104 ESSENTIAL OIL: WINTERGREEN BOTANICAL NAME: GAULTHERIA PROCUMBENS ORIGIN: CHINA KEY CONSTITUENTS PRESENT IN THIS BATCH OF WINTERGREEN OIL % METHYL SALICYLATE 99.4 Comments from

More information

Beyond TPH. John Fitzgerald Massachusetts Department of Environmental Protection

Beyond TPH. John Fitzgerald Massachusetts Department of Environmental Protection Beyond TPH John Fitzgerald Massachusetts Department of Environmental Protection Characterizing Petroleum Contamination Source Migration Screening: PID, TPH ID/Detailed: GC, GC/MS Risks Posed by Hydrocarbons

More information

CHAPTER 8. Sample Laboratory Experiments

CHAPTER 8. Sample Laboratory Experiments CHAPTER 8 Sample Laboratory Experiments 8.c SPME-GC-MS Analysis of Wine Headspace Bailey Arend For many consumers, the aroma of a wine is nearly as important as the flavor. The wine industry is obviously

More information

Analysis of Dairy Products, Using SIFT-MS

Analysis of Dairy Products, Using SIFT-MS WHITE PAPER Analysis of Dairy Products, Using SIFT-MS Analysis of Dairy Products, Using SIFT-MS The sensory appeal of dairy products is in part due to the very desirable aromas that they exhibit. These

More information

No adulterants, diluents, or contaminants were detected via this method. Conforms to ranges found in the literature. Extra caution should be taken

No adulterants, diluents, or contaminants were detected via this method. Conforms to ranges found in the literature. Extra caution should be taken 1 Sample: Client: Sample: Brambleberry Batch # 10355605 CAS Number 8000-28-0 Type: Lavender Absolute (Lavandula angustifolia) Essential Oil Conclusion: No adulterants, diluents, or contaminants were detected

More information

Effect of Clonal Specificity of the Monoterpene Alcohol Composition of Tea Shoots on Black Tea Aroma Profile

Effect of Clonal Specificity of the Monoterpene Alcohol Composition of Tea Shoots on Black Tea Aroma Profile Effect of Clonal Specificity of the Monoterpene Alcohol Composition of Tea Shoots on Black Tea Aroma Profile ByTADAKAZUTAKEO Tea Technology Division, National Research Institute of Tea (Kanaya, Haibara,

More information