Coffee, tea, and cocoa are important dietary sources of

Similar documents
Red Wine and Cardiovascular Disease. Does consuming red wine prevent cardiovascular disease?

Saturated Fat and Cholesterol Should Be Reduced in a Heart-healthy Diet Antagonist. Disclosures: February 18, Eric C. Westman, M.D. M.H.S.

Author's response to reviews

DOES BEER PLAY A SOLE ROLE IN ALCOHOL AND HEALTH SYMPHONY?

Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes

Wine and Health. Mickey Parish, Ph.D. Professor and Chair Dept of Nutrition and Food Science College of Agriculture and Natural Resources

Coffee consumption is not associated with increased risk of atrial fibrillation: results from two prospective cohorts and a meta-analysis

23 Studies on Low-Carb and Low-Fat Diets Time to Retire the Fad

Effects of Ground Chickpea as Wheat Flour Replacer in Corn Muffins B.A. Hollingsworth

Family Farmer Owned. Concord Grape Health and Nutrition

Evidence and Approach to Establish Guidelines for Dietary Cholesterol. Catherine J. Klein, PhD, RD December 3, 2008

The Effect of Green Tea on the Texture, Taste and Moisture of Gharidelli Double Chocolate Brownies

Published in: Food and Function. DOI: /c2fo30186e. Document Version Peer reviewed version. Link to publication in the UWA Research Repository

Coffee: A Selected Overview of Beneficial or Harmful Effects on the Cardiovascular System?

DOWNLOAD OR READ : LOW CHOLESTEROL DIET AND RECIPE BOOK PDF EBOOK EPUB MOBI

Primary Prevention of Food Allergies

Habitual Coffee Consumption and Risk of Heart Failure: A Dose Response Meta-Analysis

The Associations Between Consumption of Coffee and Soy Food With Health Outcomes.

ROUNDTABLE REPORT Coffee, caffeine, mortality and life expectancy

A BEGINNER S GUIDE TO TEA. Types of Tea, Best Steeping Practices and Natural Health Benefits

Frequency of a diagnosis of glaucoma in individuals who consume coffee, tea and/or soft drinks

Coffee, Caffeine, and Health Outcomes: An Umbrella Review

Starbucks Coffee Statistical Analysis Anna Wu Mission San Jose High School Fremont, CA 94539, USA

Effects of Acai Berry on Oatmeal Cookies

Audrey Page. Brooke Sacksteder. Kelsi Buckley. Title: The Effects of Black Beans as a Flour Replacer in Brownies. Abstract:

The impact of a continuous care intervention for treatment of type 2 diabetes on health care system utilization

Coffee and Tea Consumption and the Risk of Lung Cancer in a Population of Postmenopausal Women

European Journal of Internal Medicine

Greenbrrew. Instant Coffee

Lifestyle Diseases and Their Association with Coffee Consumption at Ipoh, Malaysia

NO CONFLICT OF INTEREST TO DECLARE

Effect of Different Levels of Grape Pomace on Blood Serum Biochemical Parameters Broiler Chicks at 29 and 49 days of age

GROUP LA GARDONNENQUE. La Gardonnenque SCA since INOSUD SA since people. 25 M Turnover

The nutritional benefits of an alternative firstclass meat-free protein source, Quorn.

The Effect of Soy Flour Content on the Texture and Preference of Pasta Beth Bessler Mary Reher

Coffee intake and incidence of hypertension 1 3

III InTIfir IIII A COMPARATIVE STUDY OF BLACK TEA AND INSTANT TEA TO DEVELOP AN INSTANT TEA TABLE~ WITH RETAINED HEALTH PROMOTING PROPERTIES

Supplementary Table 1. Glycemic load (GL) and glycemic index (GI) of individual fruits. Carbohydrate (g/serving)

Step 1: Brownie batter was prepared for each oil variation following the recipe on the Betty Crocker brownie mix box.

Annals of Oncology Advance Access published July 11, 2011

Association of Coffee Drinking with Total and Cause-Specific Mortality

British Journal of Nutrition

WINE OR WELCH S? Guiding Your Employees to Informed Decisions

Coffee and Health: A Review of Recent Human Research

Determination of the concentration of caffeine, theobromine, and gallic acid in commercial tea samples

Coffea arabica, Coffea canephora or Coffea robusta, Coffea liberica.

L-Theanine Clinical Studies

Cholesterol Lowering Diet: Lower Cholesterol With Paleo Recipes And Low Carb By Nelson Sarah, Jacqueline Collins READ ONLINE

Coffee Acutely Increases Sympathetic Nerve Activity and Blood Pressure Independently of Caffeine Content. Role of Habitual Versus Nonhabitual Drinking

Mulberry Assorted. Morus rubra, Morus alba, Morus nigra. (a) Morus rubra red mulberry. Female flowers. Male flowers. (b) Morus alba white mulberry

DEMETRIOS KOURETAS PROFESSOR DEPARTMENT OF BIOCHEMISTRY & BIOTECHNOLOGY UNIVERSITY OF THESSALY, GREECE

A THESIS SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY. Muhammad Fareed Khan Suri

More Diet Fads and Fantasies. Written by Jeff Novick, M.S., R.D. Tuesday, 21 September :58

Nutritional profile of Quorn mycoprotein

Effect of Different Levels of Grape Pomace on Performance Broiler Chicks

PROMOTION OF EXTRACTION OF GREEN TEA CATECHINS IN WATER EXTRACTION AT LOW TEMPERATURE USING ULTRASOUND. Hitoshi Koiwai, Nobuyoshi Masuzawa

Caffeinated beverage intake and the risk of heart disease mortality in the elderly: a prospective analysis 1,2

ORIENTAL TEA COMPLEX. Product for anti-aging. the one who knows natural products

COMPARATIVE STUDY OF ANTIOXIDANT POTENTIAL OF TEA WITH AND WITHOUT ADDITIVES

Dietary intake of caffeine. EFSA STAKEHOLDERS MEETING ON THE SAFETY OF CAFFEINE Brussels, 5 March 2015

DBP Formation from the Chlorination of Organics in Tea and Coffee

Prevalence of Obesity Among Adults and Youth: United States,

Tofu is a high protein food made from soybeans that are usually sold as a block of

ART ICLECoffee, Tea, and Caffeine Consumption and Incidence of Colon and Rectal Cancer

1. Quinoa is Incredibly Nutritious

Problem. Background & Significance 6/29/ _3_88B 1 CHD KNOWLEDGE & RISK FACTORS AMONG FILIPINO-AMERICANS CONNECTED TO PRIMARY CARE SERVICES

Samples: Standard solutions of rutin, quercetina, rosmarinic acid, caffeic acid and gallic acid. Commercial teas: Green, Ceilan, Hornimans and Black.

Introduction to Sunflower Nutrition and Product Applications. By: Thunyaporn Jeradechachai (Naggie) Crop Quality Specialist Northern Crops Institute

KETOGENIC DIET FAMILY. Beginners Guide and FAQ s. For the. ketoeveryday.co.za. ketonutritioneveryday. The wherever tastier healthier lifestyle!

Chinese Red Yeast Rice Effectively Control Cholesterol Levels And Promote Cardiovascular Health Woodland Health

Shaklee 180. Frequently Asked Questions. The Shaklee 180 Program and Special Diet Needs

The University of North Texas Dining Services White Paper: A Vegetarian Diet

Fungicides for phoma control in winter oilseed rape

Drink a Cup of Coffee and Brighten the Day


Analysis of Resveratrol in Wine by HPLC

7/21/2011. Breakthroughs in Food Allergy: Keeping Nutritious Foods at the Table Dietary Guidelines for Americans on Allergies

Several epidemiologic studies have examined coffee consumption

25 + Health Benefits Of Coffee. By Chef K.T. Murphy

Coffee, tea, and alcohol intake in relation to risk of type 2 diabetes in African American women 1 4

Wine anthocyanins: gut metabolism key to anti-cancer effects?

Moderate coffee consumption improves aortic distensibility in hypertensive elderly individuals. Ikaria study

CHANGES IN PEAK EXPIRATORY FLOW RATE, BLOOD PRESSURE AND PULSE RATE FOLLOWING INGESTION OF INCREASED COFFEE CONCENTRATIONS IN HEALTHY MALE ADULTS

CAFFEINE AND CARDIOVASCULAR RISK: A REVIEW

Increasing Toast Character in French Oak Profiles

Theeranat Suwanaruang *

Coffee consumption and mortality in women with cardiovascular disease 1 3

High Performance Thing Layer Chromatographic (HPTLC) analysis of polyphenolic composition in wine samples

Pediatric Food Allergies: Physician and Parent. Robert Anderson MD Rachel Anderson Syracuse, NY March 3, 2018

BEEF Effect of processing conditions on nutrient disappearance of cold-pressed and hexane-extracted camelina and carinata meals in vitro 1

REVIEW ARTICLE. Effects of Low-Carbohydrate vs Low-Fat Diets on Weight Loss and Cardiovascular Risk Factors

The effect of coffee consumption on serum total cholesterol in the Sami and Norwegian populations

POTATOES USA / SNAC-INTERNATIONAL OUT-OF-STORAGE CHIP QUALITY MICHIGAN REGIONAL REPORT

Coffee Consumption and Mortality for Prostate Cancer. From the Department of Hygiene, Tohoku University School of Medicine, Sendai

TEA IS THE MOST CONSUMED BEVerage

PEER REVIEW HISTORY ARTICLE DETAILS TITLE (PROVISIONAL)

5. Supporting documents to be provided by the applicant IMPORTANT DISCLAIMER

Frontiers in Food Allergy and Allergen Risk Assessment and Management. 19 April 2018, Madrid

Espresso Coffee Consumption and Risk of Coronary Heart Disease in a Large Italian Cohort

TURNS OUT, COFFEE IS GOOD FOR YOU AFTER ALL, WITH SOME DUBBING IT THE NEW RED WINE. HERE S WHAT TO LOOK FOR IN YOUR NEXT BREW

Transcription:

Topical Review Section Editors: Armin J. Grau, MD, PhD, and George Howard, DrPH Coffee, Tea, and Cocoa and Risk of Stroke Susanna C. Larsson, PhD Coffee, tea, and cocoa are important dietary sources of polyphenols and have received much attention during the past years because of their potential beneficial effects on cardiovascular health. The polyphenols in these beverages and cocoa may reduce the risk of stroke through multiple mechanisms, including antihypertensive, hypocholesterolemic, antioxidant, and anti-inflammatory effects as well as through improvements of vascular endothelial function and insulin sensitivity. This review summarizes the available evidence from experimental studies, prospective studies, and metaanalyses of the potential role of coffee, tea, and cocoa in the prevention of stroke. Methods References for this review were identified through a literature search of the PubMed database through October 2013 by using the following search terms: coffee, tea, cocoa, chocolate, prospective study, cohort study, randomized trial, meta-analysis, review, stroke, cerebral infarction, and cerebrovascular disease. Moreover, the reference lists of pertinent publications were searched manually for further relevant articles. Priority was given to systematic reviews and meta-analyses published during the past 5 years. When >1 meta-analysis on the same topic was available, the most recent publication was included in the present review. Coffee Coffee is a complex beverage with hundreds of bioactive components with potential adverse or beneficial effects on the cardiovascular system. The most abundant bioactive compounds in coffee are caffeine, diterpenes (present in the oil), and polyphenols. The cardiovascular effects of coffee drinking depend in part on coffee preparation method and individual characteristics (eg, hypertension and hyperlipidemia). 1 3 There are 2 main methods of coffee preparation: filtered and unfiltered. Filtered coffee, also known as drip-brewed coffee, is the most common mode of preparation in the United States and involves brewing the coffee through a paper filter. Unfiltered coffee, often known as boiled coffee, do not use a filter and includes Scandinavian boiled, French press, Turkish/Greek, and espresso coffees. Espresso is often the base for other drinks, such as latte, cappuccino, macchiato, and caffè Americano. Caffeine is a stimulant that induces a transient increase in blood pressure (BP). Findings from a meta-analysis of 5 randomized controlled trials (RCTs) of the acute effects of caffeine on BP in individuals with hypertension showed that intake of 200 300 mg caffeine (equivalent to 1.5 2 cups of coffee) produced a mean rise of 8.1 mm Hg in systolic blood pressure and of 5.8 mm Hg in diastolic blood pressure (Table 1). 1 The increase in BP was observed in the first hour after caffeine ingestion and lasted for 3 hours. However, a metaanalysis of 10 RCTs of the long-term effect of coffee consumption in mainly healthy, normotensive individuals found no significant changes in systolic blood pressure or diastolic blood pressure (Table 1). 2 Prospective studies of habitual coffee consumption and risk of hypertension have yielded inconsistent results, with a positive association found in 2 out of 4 studies. 2 Tolerance to the effects of caffeine on BP in some individuals may in part explain why the long-term effects of coffee consumption differ from the short-term effects. Moreover, other compounds present in coffee may counteract the BP-raising effect of caffeine. A study of 6 habitual and 9 nonhabitual coffee drinkers found that intravenous caffeine raised BP in both groups, whereas coffee consumption increased BP in nonhabitual drinkers only. 4 The diterpenes cafestol and kahweol have cholesterol-raising properties. 5 The diterpenes are extracted from the coffee beans by hot water but are retained by a paper filter. 5 Hence, unfiltered coffee, particularly Scandinavian boiled and Turkish coffees, contains much higher concentrations of diterpenes than filtered coffee, which only contains negligible amounts. 6 Espresso coffee contains intermediate amounts. 6 In a meta-analysis of 12 RCTs, including 1017 subjects, consumption of unfiltered coffee significantly increased total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride concentrations, whereas filtered coffee consumption produced a small change in total cholesterol concentrations only (Table 1). 3 The metaanalysis further showed that those who had hyperlipidemia seemed to be more sensitive to the cholesterol-raising effect of coffee. 3 Coffee is rich in various polyphenols, most notably chlorogenic acid (CGA), which possesses antioxidant activities in vitro. 7 Studies in animals have demonstrated that coffee and caffeic acid, a primary CGA metabolite, can decrease lipid peroxidation, thus indicating also an in vivo antioxidant activity. 7 However, there is controversy on whether chlorogenic acid and other polyphenols in coffee could suppress the oxidative modification of LDL particles in humans. Among 3 available studies on this topic, 2 studies reported a protective effect of 1 cup of boiled 8 or filtered coffee 9 on LDL oxidation, whereas 1 study found neither short-term nor long-term effects of filtered coffee consumption on lipid peroxidation. 10 As opposed to caffeine, CGA have been demonstrated to have antihypertensive effects, 11,12 possibly via nitric oxide mediated vasodilation. 12 Results from an RCT of 23 healthy adults showed that CGA ingestion significantly reduced systolic blood pressure by 2.41 mm Hg and diastolic blood pressure by 1.53 mm Hg. 11 Epidemiological Studies on Coffee and Stroke In the past, coffee was generally viewed as a risk factor for cardiovascular disease. However, recent evidence suggests that moderate coffee consumption may reduce stroke risk. Results from a metaanalysis of 11 prospective studies (published through January 2011) involving 479 689 participants and 10 003 stroke cases showed a nonlinear relationship between coffee consumption and stroke risk From the Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. Correspondence to Susanna C. Larsson, PhD, Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177 Stockholm, Sweden. E-mail Susanna.Larsson@ki.se (Stroke. 2014;45:309-314.) 2013 American Heart Association, Inc. Stroke is available at http://stroke.ahajournals.org DOI: 10.1161/STROKEAHA.113.003131 309

310 Stroke January 2014 Table 1. Summary of Recent Meta-Analyses of RCTs of the Effects of Coffee or Caffeine Intake on Cardiometabolic Biomarkers References Interventions Duration Mesas et al, 2011 1 Coffee or caffeine (200 300 mg) Steffen et al, 2012 2 Filtered, boiled, instant, or decaffeinated coffee No. of Trials Outcomes Effects Mean Change (95% CI) Heterogeneity P Value I 2, % <60 180 min 5 SBP (mm Hg) 8.14 (5.68, 10.61) 0.99 0 5 DBP (mm Hg) 5.75 (4.09, 7.41) 0.57 0 4 16 wk 10 SBP (mm Hg) 0.55 ( 2.46, 1.36) <0.001 72 10 DBP (mm Hg) 0.45 ( 1.52, 0.61) 0.07 41 Cai et al, 2012 3 Filtered coffee 14 79 d 10 Total cholesterol * 9 LDL cholesterol * 5 Triglycerides * Cai et al, 2012 3 Boiled/unfiltered coffee 14 79 d 12 Total cholesterol * 6 LDL cholesterol * 6 Triglycerides (mg/dl)* 0.09 (0.02, 0.17) 0.52 0 0.06 ( 0.03, 0.15) 0.35 10 0.04 ( 0.05, 0.13) 0.43 0 0.33 (0.18, 0.49) <0.0010 79 0.31 (0.08, 0.53) 0.002 73 0.21 (0.05, 0.37) 0.001 77 CI indicates confidence interval; DBP; diastolic blood pressure; LDL, low-density lipoprotein; RCTs, randomized controlled trials; and SBP; systolic blood pressure. *Values were converted from mg/dl to mmol/l by dividing the levels of cholesterol (total, LDL, and HDL) by 38.67; triglyceride levels by 88.57; and glucose levels by 18.02. (Figure 1). 13 Compared with no coffee consumption, the overall relative risks (RRs; 95% CI) of total stroke were 0.87 (0.81 0.93) for 2, 0.84 (0.77 0.91) for 3 4, 0.88 (0.79 0.97) for 6, and 0.94 (0.80 1.10) for 8 cups/d of coffee. 13 Risk estimates were similar for ischemic and hemorrhagic stroke and for men and women at lower levels of coffee consumption ( 2 cups/d). 13 Three prospective studies on coffee consumption and stroke 14 16 were published since the meta-analysis. Two of them confirmed an inverse association of moderate coffee consumption with stroke incidence 14 or mortality. 15 Findings from a large prospective cohort of 229 119 US men and 173 141 US women showed an inverse association between moderate coffee consumption and stroke mortality. 15 In men, the multivariable RRs (95% CI) of total stroke death were 0.99 (0.79 1.24) for <1, 0.92 (0.73 1.15) for 1, 0.84 (0.68 1.02) for 2 3, 0.65 (0.51 0.84) for 4 5, and 0.83 (0.61 1.14) for 6 cups/d compared with no coffee consumption (P for trend=0.003). 15 In women, compared with no coffee consumption, the RRs (95% CI) were 1.15 (0.91 1.45) for <1, 0.89 (0.70 1.13) for 1, 0.93 (0.75 1.15) for 2 3, 0.82 (0.62 1.09) for 4 5, and 0.84 (0.56 1.25) for 6 cups/d (P for trend=0.05). 15 A prospective study of 82 369 Japanese adults also observed an inverse association between moderate coffee consumption and stroke risk (RR, Relative Risk (95% CI) 1.1 1 0.9 0.8 0.7 1.00 (ref.) 0.92 0.87 0.84 0.84 0.85 0.88 0.94 0.91 0 1 2 3 4 5 6 7 8 Coffee Consumption, cups/day Figure 1. Relative risks of stroke by coffee consumption in prospective studies. The relative risks were extracted from the metaanalysis by Larsson and Orsini. 13 0.81; 95% CI [0.72 0.91], for 2 cups/d versus none). 14 No association between caffeinated or decaffeinated coffee consumption and stroke risk was observed in a prospective study of 42 659 German adults, but the number of cases was small (n=310). 16 Coffee consumption is usually associated with a less health conscious diet and lifestyle. Although most studies controlled for other dietary and lifestyle factors, residual confounding may in part explain the inconsistent results. Furthermore, because the relative composition of bioactive compounds in coffee varies by coffee preparation method, this could contribute to the heterogeneity among studies in different populations. Green and Black Tea Tea is the most frequently consumed beverage in the world after water. Tea is produced from the leaves of the plant Camellia sinensis and can be classified by degree of fermentation: black tea (fermented), predominantly consumed in Western countries; oolong tea (partially fermented), primarily consumed in Southern China and Taiwan; and green tea (unfermented), mainly consumed in Asia. All types of tea are rich in various flavonoids. Catechins are the main flavonoids in green tea, whereas black tea mainly contains condensed flavonoids, such as theaflavins and thearubigins. 17 Tea and tea-derived flavonoids have been demonstrated to have a hypocholesterolemic effect and to reduce the development of atherosclerosis in animal models. 17,18 Tea flavonoids can enhance nitric oxide status and improve endothelial function, which could at least partly be responsible for the benefits of tea on cardiovascular health. 17,18 Studies in humans also indicate potential beneficial effects of consumption of green and black tea on cardiometabolic risk factors, including endothelial function (measured by flow-mediated dilatation), blood pressure, and cholesterol and blood glucose concentrations (Table 2). The most consistent findings are for endothelial function. In a meta-analysis of 9 RCTs (2 on green tea, 6 on black tea, and 1 on both types of tea), involving 213 participants, the overall absolute increase in FMD of tea consumption (median daily dose of 500 ml tea, equivalent to 2 3 cups) versus placebo was 2.6% of the arterial diameter. 19 This is a relative improvement of 40% compared with the average FMD of 6.3% measured under placebo or baseline conditions. 19 Results from a meta-analysis of 14 short-term ( 3 months) RCTs showed that green tea consumption lowered total and LDL cholesterol

Larsson Coffee, Tea, Cocoa, and Stroke 311 Table 2. Summary of Recent Meta-Analyses of RCTs of the Effects of Green and Black Tea Consumption on Cardiometabolic Biomarkers References Interventions Duration Ras et al, 2011 19 Green or black tea as a beverage Zheng et al, 2011 20 Green tea as a beverage or green tea extract Hartley et al, Green tea as a 2013 21 beverage or green tea extract Hartley et al, Black tea extracts, 2013 21 in tablet form or as a drink Liu et al, 2013 22 Green tea extract or decaffeinated green tea extract Zheng et al, Green tea extract 2013 23 or decaffeinated green tea extract No. of Trials Outcomes Effects Mean Change (95% CI) Heterogeneity P Value I 2, % 120 min 4 wk 9 FMD (%) 2.6 (1.8, 3.3) <0.001 75.8 3 wk 3 mo 14 Total cholesterol * 11 LDL cholesterol * 12 HDL cholesterol * 0.19 ( 0.21, 0.16) 0.06 ( 0.08, 0.03) 0.006 ( 0.02, 0.03) 3 6 mo 2 SBP (mm Hg) 3.18 ( 5.25, 1.11) 2 DBP (mm Hg) 3.42 ( 4.54, 2.30) 4 Total cholesterol 4 LDL cholesterol 4 HDL cholesterol 4 Triglycerides 0.35 9 0.20 25 0.27 18 0.72 0 0.39 0 0.62 ( 0.77, 0.46) 0.28 21 0.64 ( 0.77, 0.33 13 0.52) 0.01 ( 0.08, 0.11) 0.18 39 0.08 ( 0.24, 0.07) 0.41 0 3 6 mo 2 SBP (mm Hg) 1.85 ( 3.21, 0.49 0 0.48) 2 DBP (mm Hg) 1.27 ( 3.06, 0.53 0 0.53) 2 Total cholesterol NA NA* NA 84 3 LDL cholesterol 3 HDL cholesterol 3 Triglycerides 4 wk 3 mo 17 Fasting glucose 13 Fasting insulin (μiu/ml) 0.43 ( 0.56, 0.31) 0.22 33 0.01 ( 0.06, 0.20 36 0.04) NA NA* NA 64 0.09 ( 0.15, 0.03) 1.16 ( 1.91, 0.40) 7 Hb A 1c (%) 0.30 ( 0.37, 0.22) 5 HOMA-IR (units) 0.04 ( 0.67, 0.59) 3 24 wk 22 Fasting glucose 16 Fasting insulin (μu/ml) 0.73 0 0.01 57 0.10 44 0.13 44 0.08 ( 0.14, 0.92 0 0.02) 0.04 ( 0.36, 0.45) 0.35 9 6 Hb A 1c (%) 0.04 ( 0.15, 0.12 40 0.08) 6 HOMA-IR (units) 0.05 ( 0.37, 0.26) 0.31 16 CI indicates confidence interval; DBP; diastolic blood pressure; FMD, flow-mediated dilation; Hb A 1c, glycohemoglobin; HDL, high-density lipoprotein; HOMA-IR, homeostatic model assessment index for insulin resistance; LDL, low-density lipoprotein; NA, not available; RCTs, randomized controlled trials; and SBP; systolic blood pressure. *Meta-analysis was not performed because of significant heterogeneity between the trials. Values were converted from mg/dl to mmol/l by dividing by 38.67 for total cholesterol, LDL cholesterol, and HDL cholesterol; by 88.57 for triglycerides; and by 18.02 for glucose.

312 Stroke January 2014 Table 3. Summary of Recent Meta-Analyses of RCTs of the Effects of Cocoa or Chocolate Consumption on Cardiometabolic Biomarkers References Interventions Duration Ried et al, 2012 27 Dark or milk chocolate or flavanol-rich cocoa powder Hooper et al, 2012 28 Dark or milk chocolate, cocoa drinks, or cocoa supplements concentrations but had no effect on high-density lipoprotein cholesterol. 20 In another meta-analysis of RCTs of 3 months duration, both green and black tea consumption reduced LDL cholesterol concentrations as well as BP. 21 With regard to glucose and insulin, 2 metaanalyses of several RCTs found that green tea consumption decreased fasting blood glucose concentrations, whereas results for insulin and hemoglobin A1c concentrations were inconsistent. 22,23 Epidemiological Studies on Tea and Stroke In a meta-analysis of 14 prospective studies of green or black tea consumption, the overall RR of total stroke for a 3-cup/d increment in tea consumption was 0.87 (95% CI, 0.81 0.94), with heterogeneity among studies (P=0.006). 24 There was no evidence of publication bias (Egger test: P=0.85). 24 The association was similar in men and women and among most subgroups, but was slightly stronger for green tea (RR=0.83; 95% CI [0.72 0.96]; P heterogeneity <0.01; n=5 studies) than for black tea (RR=0.91; 95% CI [0.83 0.98]; P heterogeneity =0.17; No. of Trials Outcomes Effects Mean Change (95% CI) 2 8 wk* 20 SBP (mm Hg) 2.77 ( 4.72, 0.82) 19 DBP (mm Hg) 2.20 ( 3.46, 0.93) 18 wk 3 SBP (mm Hg), acute 23 SBP (mm Hg), chronic 3 DBP (mm Hg), acute 22 DBP (mm Hg), chronic 4 MAP (mm Hg), chronic 1.75 ( 6.27, 2.77) 1.50 ( 3.43, 0.43) 1.38 ( 4.14, 1.38) 1.60 ( 2.77, 0.43) 1.64 ( 3.27, 0.01) Heterogeneity P Value I 2, % <0.001 83 <0.001 70 NA 85 n=13 studies). 24 The heterogeneity may be because of differences in types of tea, tea preparation methods (amounts of tea leaves, cup size, brewing time, water temperatures, addition of milk or sugar, etc), stroke measures, and analysis strategies. 24 Two recent large prospective studies of green 14 or black tea 25 consumption confirmed a reduction in stroke risk associated with high tea consumption. Results from a cohort of 82 369 Japanese men and women showed a significant 20% reduced risk of total stroke among those who consumed 4 cups/d of green tea. 14 In a cohort of 74 961 Swedish men and women, consumption of 4 cups/d of black tea, compared with no consumption, was associated with a significant 21% lower risk of total stroke. 25 In both studies, the association was similar for ischemic stroke and intracerebral hemorrhage. Cacao Products Cacao products, such as chocolate, are rich sources of flavonoids, mainly flavan-3-ols (also referred to as flavanols), which are potent NA NA NA 79 NA 52 NA 0 11 FMD (%), acute 3.19 (2.04, 4.33) <0.001 84 11 FMD (%), chronic 1.34 (1.00, 1.68) 0.58 0 11 Fasting glucose 0.02 ( 0.22, 0.17) 0.02 54 5 Fasting insulin (μu/ml) 2.65 ( 4.65, 0.65) 0.50 0 3 Hb A 1c (%) 0.02 ( 0.09, 0.14) NA NA 6 HOMA-IR (units) 0.67 ( 0.98, 0.61 0 0.36) 21 Total cholesterol 0.04 ( 0.11, 0.03) NA NA 21 LDL cholesterol 21 HDL cholesterol 22 Triglycerides 10 C-reactive protein (mg/l) 0.07 ( 0.13, NA NA 0.00) 0.03 (0.00, 0.06) NA NA 0.05 ( 0.09, NA NA 0.01) 0.12 ( 0.42, 0.66) NA NA CI indicates confidence interval; DBP; diastolic blood pressure; FMD, flow-mediated dilation; Hb A 1c, glycohemoglobin; HDL, high-density lipoprotein; HOMA-IR, homeostatic model assessment index for insulin resistance; LDL, low-density lipoprotein; MAP, mean arterial pressure; NA, not available; RCTs, randomized controlled trials; and SBP; systolic blood pressure. *One trial was 18 wk. Acute effect: studies of 90 150 min duration; chronic effect: studies of <3, 3 6, or 7 26 wk duration.

Larsson Coffee, Tea, Cocoa, and Stroke 313 Figure 2. Relative risks (RRs) of stroke for the highest versus lowest category of chocolate consumption in prospective studies. Squares represent the study-specific RRs (size of the square indicates the study-specific statistical weight, that is, the inverse of the variance); the horizontal lines represent 95% confidence intervals (CIs); and the diamond represents the overall RR estimate with its 95% CI. Study-specific RRs were combined by using a random effects model. The RRs were extracted from the meta-analysis by Larsson et al. 33 Heterogeneity test: I 2 =0%; P=0.47. COSM indicates Cohort of Swedish Men 33 ; EPIC, European Prospective Investigation into Cancer 31 ; IWHS, Iowa Women s Health Study 34 ; SHEEP, Stockholm Heart Epidemiology Program 35 ; and SMC, Swedish Mammography Cohort. 32 antioxidant and anti-inflammatory compounds. Both the flavan-3-ol content and the total antioxidant capacity in plasma increase after cocoa consumption. 26 Whether these effects are reduced when cocoa is ingested with milk or when cocoa is consumed as milk chocolate is controversial. 26 Flavanols found in cocoa have also been shown to increase the formation of endothelial nitric oxide, which promotes vasodilation and thus blood pressure reduction. 27 The potential benefits of cacao products on cardiovascular health have been examined in several short-term RCTs, and results from those trials have been summarized in meta-analyses. The overall results from 2 meta-analyses indicate that cocoa or chocolate intake may modestly reduce systolic blood pressure 27 and diastolic blood pressure, 27,28 but findings from individual trials were inconsistent (Table 3). A recent meta-analysis of 42 acute or short-term chronic ( 18 weeks) RCTs found that cocoa or chocolate interventions significantly reduced fasting insulin concentrations, insulin resistance, and mean arterial pressure as well as improved endothelial function measured by FMD (Table 3). 28 Cocoa or chocolate consumption had only marginally significant or no effects on blood concentrations of cholesterol (total, LDL, and high-density lipoprotein), triglycerides, glucose, hemoglobin A1c, and C-reactive protein. 28 In a recent 1-year trial comprising 93 postmenopausal women with type 2 diabetes mellitus, a combination of flavan-3-ols and isoflavones reduced LDL cholesterol ( 0.1 mmol/l; P=0.04) and insulin ( 0.8 mu/l; P=0.02) concentrations and the homeostatic model assessment index for insulin resistance ( 0.3; P=0.004). 29 Several controlled intervention studies have found that flavanols present in cocoa may improve platelet function. Based on data from 5 trials, Ostertag et al 30 estimated that intake of 100 mg of flavanols induces a 3% to 11% reduction in platelet aggregation. Epidemiological Studies on Chocolate and Stroke The few prospective studies of chocolate consumption in relation to stroke risk have reported either a statistically significant 31 33 or a nonsignificant inverse association 34,35 (Figure 2). Results from a metaanalysis of those 5 studies (4 from Europe and 1 from the United States) showed a significant 19% lower risk of stroke when comparing the highest with the lowest category of chocolate consumption (Figure 2) and a significant 14% reduction in stroke risk for a 50-g/ week increment in chocolate consumption, without heterogeneity among studies. 33 There was indication of potential publication bias in the meta-analysis for the highest versus lowest category of chocolate consumption (Egger test: P=0.03) but not in the dose response metaanalysis (Egger test: P=0.26). 33 Summary Current evidence from experimental studies in animals and humans along with findings from prospective studies indicates beneficial effects of green and black tea as well as chocolate on cardiovascular health, and that tea and chocolate consumption may reduce the risk of stroke. The strongest evidence exists for beneficial effects of tea and cocoa on endothelial function, total and LDL cholesterol (tea only), and insulin sensitivity (cocoa only). The majority of prospective studies have reported a weak inverse association between moderate consumption of coffee and risk of stroke. However, there are yet no clear biological mechanisms whereby coffee might provide cardiovascular health benefits. Awaiting the results from further long-term RCTs and prospective studies, moderate consumption of filtered coffee, tea, and dark chocolate seems prudent. None. Disclosures References 1. Mesas AE, Leon-Muñoz LM, Rodriguez-Artalejo F, Lopez-Garcia E. The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: a systematic review and meta-analysis. Am J Clin Nutr. 2011;94:1113 1126. 2. Steffen M, Kuhle C, Hensrud D, Erwin PJ, Murad MH. The effect of coffee consumption on blood pressure and the development of hypertension: a systematic review and meta-analysis. J Hypertens. 2012;30:2245 2254. 3. Cai L, Ma D, Zhang Y, Liu Z, Wang P. The effect of coffee consumption on serum lipids: a meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2012;66:872 877. 4. Corti R, Binggeli C, Sudano I, Spieker L, Hänseler E, Ruschitzka F, et al. Coffee acutely increases sympathetic nerve activity and blood pressure independently of caffeine content: role of habitual versus nonhabitual drinking. Circulation. 2002;106:2935 2940. 5. Urgert R, Katan MB. The cholesterol-raising factor from coffee beans. Annu Rev Nutr. 1997;17:305 324. 6. Gross G, Jaccaud E, Huggett AC. Analysis of the content of the diterpenes cafestol and kahweol in coffee brews. Food Chem Toxicol. 1997;35:547 554. 7. Bonita JS, Mandarano M, Shuta D, Vinson J. Coffee and cardiovascular disease: in vitro, cellular, animal, and human studies. Pharmacol Res. 2007;55:187 198. 8. Yukawa GS, Mune M, Otani H, Tone Y, Liang XM, Iwahashi H, et al. Effects of coffee consumption on oxidative susceptibility of low-density lipoproteins and serum lipid levels in humans. Biochemistry (Mosc). 2004;69:70 74. 9. Natella F, Nardini M, Belelli F, Scaccini C. Coffee drinking induces incorporation of phenolic acids into LDL and increases the resistance of LDL to ex vivo oxidation in humans. Am J Clin Nutr. 2007;86:604 609. 10. Mursu J, Voutilainen S, Nurmi T, Alfthan G, Virtanen JK, Rissanen TH, et al. The effects of coffee consumption on lipid peroxidation and plasma

314 Stroke January 2014 total homocysteine concentrations: a clinical trial. Free Radic Biol Med. 2005;38:527 534. 11. Mubarak A, Bondonno CP, Liu AH, Considine MJ, Rich L, Mas E, et al. Acute effects of chlorogenic acid on nitric oxide status, endothelial function, and blood pressure in healthy volunteers: a randomized trial. J Agric Food Chem. 2012;60:9130 9136. 12. Zhao Y, Wang J, Ballevre O, Luo H, Zhang W. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens Res. 2012;35:370 374. 13. Larsson SC, Orsini N. Coffee consumption and risk of stroke: a dose-response meta-analysis of prospective studies. Am J Epidemiol. 2011;174:993 1001. 14. Kokubo Y, Iso H, Saito I, Yamagishi K, Yatsuya H, Ishihara J, et al. The impact of green tea and coffee consumption on the reduced risk of stroke incidence in Japanese population: the Japan public health center-based study cohort. Stroke. 2013;44:1369 1374. 15. Freedman ND, Park Y, Abnet CC, Hollenbeck AR, Sinha R. Association of coffee drinking with total and cause-specific mortality. N Engl J Med. 2012;366:1891 1904. 16. Floegel A, Pischon T, Bergmann MM, Teucher B, Kaaks R, Boeing H. Coffee consumption and risk of chronic disease in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Germany study. Am J Clin Nutr. 2012;95:901 908. 17. Hodgson JM, Croft KD. Tea flavonoids and cardiovascular health. Mol Aspects Med. 2010;31:495 502. 18. Moore RJ, Jackson KG, Minihane AM. Green tea (Camellia sinensis) catechins and vascular function. Br J Nutr. 2009;102:1790 1802. 19. Ras RT, Zock PL, Draijer R. Tea consumption enhances endothelialdependent vasodilation; a meta-analysis. PLoS One. 2011;6:e16974. 20. Zheng XX, Xu YL, Li SH, Liu XX, Hui R, Huang XH. Green tea intake lowers fasting serum total and LDL cholesterol in adults: a meta-analysis of 14 randomized controlled trials. Am J Clin Nutr. 2011;94:601 610. 21. Hartley L, Flowers N, Holmes J, Clarke A, Stranges S, Hooper L, et al. Green and black tea for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013;6:CD009934. 22. Liu K, Zhou R, Wang B, Chen K, Shi LY, Zhu JD, et al. Effect of green tea on glucose control and insulin sensitivity: a meta-analysis of 17 randomized controlled trials. Am J Clin Nutr. 2013;98:340 348. 23. Zheng XX, Xu YL, Li SH, Hui R, Wu YJ, Huang XH. Effects of green tea catechins with or without caffeine on glycemic control in adults: a metaanalysis of randomized controlled trials. Am J Clin Nutr. 2013;97:750 762. 24. Shen L, Song LG, Ma H, Jin CN, Wang JA, Xiang MX. Tea consumption and risk of stroke: a dose-response meta-analysis of prospective studies. J Zhejiang Univ Sci B. 2012;13:652 662. 25. Larsson SC, Virtamo J, Wolk A. Black tea consumption and risk of stroke in women and men. Ann Epidemiol. 2013;23:157 160. 26. Corti R, Flammer AJ, Hollenberg NK, Lüscher TF. Cocoa and cardiovascular health. Circulation. 2009;119:1433 1441. 27. Ried K, Sullivan TR, Fakler P, Frank OR, Stocks NP. Effect of cocoa on blood pressure. Cochrane Database Syst Rev. 2012;8:CD008893. 28. Hooper L, Kay C, Abdelhamid A, Kroon PA, Cohn JS, Rimm EB, et al. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr. 2012;95:740 751. 29. Curtis PJ, Sampson M, Potter J, Dhatariya K, Kroon PA, Cassidy A. Chronic ingestion of flavan-3-ols and isoflavones improves insulin sensitivity and lipoprotein status and attenuates estimated 10-year CVD risk in medicated postmenopausal women with type 2 diabetes: a 1-year, double-blind, randomized, controlled trial. Diabetes Care. 2012;35:226 232. 30. Ostertag LM, O Kennedy N, Kroon PA, Duthie GG, de Roos B. Impact of dietary polyphenols on human platelet function a critical review of controlled dietary intervention studies. Mol Nutr Food Res. 2010;54:60 81. 31. Buijsse B, Weikert C, Drogan D, Bergmann M, Boeing H. Chocolate consumption in relation to blood pressure and risk of cardiovascular disease in German adults. Eur Heart J. 2010;31:1616 1623. 32. Larsson SC, Virtamo J, Wolk A. Chocolate consumption and risk of stroke in women. J Am Coll Cardiol. 2011;58:1828 1829. 33. Larsson SC, Virtamo J, Wolk A. Chocolate consumption and risk of stroke: a prospective cohort of men and meta-analysis. Neurology. 2012;79:1223 1229. 34. Mink PJ, Scrafford CG, Barraj LM, Harnack L, Hong CP, Nettleton JA, et al. Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr. 2007;85:895 909. 35. Janszky I, Mukamal KJ, Ljung R, Ahnve S, Ahlbom A, Hallqvist J. Chocolate consumption and mortality following a first acute myocardial infarction: the Stockholm Heart Epidemiology Program. J Intern Med. 2009;266:248 257. Key Words: cacao coffee diet flavonoids polyphenols risk factors stroke tea