SUPPLEMENTARY INFORMATION

Similar documents
Construction of a Wine Yeast Genome Deletion Library (WYGDL)

GROWTH TEMPERATURES AND ELECTROPHORETIC KARYOTYPING AS TOOLS FOR PRACTICAL DISCRIMINATION OF SACCHAROMYCES BAYANUS AND SACCHAROMYCES CEREVISIAE

Eukaryotic Comparative Genomics

SHORT TERM SCIENTIFIC MISSIONS (STSMs)

Reasons for the study

MUMmer 2.0. Original implementation required large amounts of memory

Simultaneous Co-Fermentation of Mixed Sugars: A Promising Strategy for Producing Cellulosic Biofuels and Chemicals

30 YEARS OF FUEL ETHANOL PRODUCTION IN BRAZIL: identification and selection of dominant industrial yeast strains.

Pevzner P., Tesler G. PNAS 2003;100: Copyright 2003, The National Academy of Sciences

Eukaryotic Comparative Genomics

Metabolic Engineering of a Strain of Saccharomyces cerevisiae Capable of Utilizing Xylose for Growth and Ethanol Production

Project Justification: Objectives: Accomplishments:

Multiple Imputation for Missing Data in KLoSA

RESOLUTION OIV-OENO 576A-2017

FINAL REPORT TO AUSTRALIAN GRAPE AND WINE AUTHORITY. Project Number: AGT1524. Principal Investigator: Ana Hranilovic

Newly-created hybrid lager yeast strains (S. cerevisiae x S. eubayanus) outperform both parents during brewery fermentation

RESOLUTION OIV-OENO MOLECULAR TOOLS FOR IDENTIFICATION OF SACCHAROMYCES CEREVISIAE WINE YEAST AND OTHER YEAST SPECIES RELATED TO WINEMAKING

Yeast Hybrids in Winemaking

Genetic Optimisation of C6 and C5 Sugar Fermentation with Saccharomyces cerevisiae

Reconstruction of the Evolutionary History of Saccharomyces cerevisiae x S. kudriavzevii Hybrids Based on Multilocus Sequence Analysis

WP Board 1054/08 Rev. 1

Molecular Characterization of New Natural Hybrids of Saccharomyces cerevisiae and S. kudriavzevii in Brewing

Level 3 Biology, 2016

Mapping and Detection of Downy Mildew and Botrytis bunch rot Resistance Loci in Norton-based Population

Strategies for reducing alcohol concentration in wine

Research Findings That Will Change the Way You Make Wine

Enhancing red wine complexity using novel yeast blends

STEM ELONGATION AND RUNNERING IN THE MUTANT STRAWBERRY, FRAGARIA VESCA L.

is pleased to introduce the 2017 Scholarship Recipients

Where in the Genome is the Flax b1 Locus?

RESOLUTION OIV-OENO MONOGRAPH ON GLUTATHIONE

EXECUTIVE SUMMARY. 1. When do Asian clams reproduce in Lake George? 2. How fast do Asian clams grow in Lake George?

Supplemental Data. Jeong et al. (2012). Plant Cell /tpc

Development of Recombinant Yeast for Cellulosic Ethanol Production From Concept to Large-Scale Production

LUISA MAYENS VÁSQUEZ RAMÍREZ. Adress: Cl 37 # 28-15, Manizales, Caldas, Colombia. Cell Phone Number:

Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance

Accuracy of imputation using the most common sires as reference population in layer chickens

Visualization of Gurken distribution in Follicle cells

Innovations and Developments in Yeast. Karen Fortmann, Ph.D. Senior Research Scientist

ORIGINAL ARTICLE. G.V. de Melo Pereira, C.L. Ramos, C. Galvão, E. Souza Dias and R.F. Schwan. Abstract

Evidence for Domesticated and Wild Populations of Saccharomyces cerevisiae

Missing Data Treatments

Health Effects due to the Reduction of Benzene Emission in Japan

Wine Yeast Population Dynamics During Inoculated and Spontaneous Fermentations in Three British Columbia Wineries

OF THE VARIOUS DECIDUOUS and

A.P. Environmental Science. Partners. Mark and Recapture Lab addi. Estimating Population Size

Identification and Classification of Pink Menoreh Durian (Durio Zibetinus Murr.) Based on Morphology and Molecular Markers

The effect of temperature on the carbon dioxide production of Saccharomyces cerevisiae as measured by the change in volume of carbon dioxide produced

Improving Capacity for Crime Repor3ng: Data Quality and Imputa3on Methods Using State Incident- Based Repor3ng System Data

THE GROWTH OF THE CHERRY OF ROBUSTA COFFEE

Asian Journal of Food and Agro-Industry ISSN Available online at

Unit code: A/601/1687 QCF level: 5 Credit value: 15

Unravelling the taxonomy of the Colletotrichum species causing anthracnose in chili in Australia and SE Asia

Problem Set #3 Key. Forecasting

Evaluate Characteristics of new cherry tomato varieties of Mahasarakham University

Missing value imputation in SAS: an intro to Proc MI and MIANALYZE

Federal Milk Market Administrator U.S. Department of Agriculture. H. Paul Kyburz, Market Administrator

Yeast Hybrids in Winemaking

SNP discovery from amphidiploid species and transferability across the Brassicaceae

Citrus Canker? What went wrong last season? Pamela D Roberts Southwest Florida REC Immokalee April 10, 2012

THE ABILITY OF WINE YEAST TO CONSUME FRUCTOSE

Réseau Vinicole Européen R&D d'excellence

Jessica Noble 1,2*, Isabelle Sanchez 3,4,5 and Bruno Blondin 3,4,5

Composition and Value of Loin Primals

Whiteflies. Catharine Mannion, Ph.D. University of Florida/IFAS Tropical Res. and Edu. Center

Supplemental Data. Ginglinger et al. Plant Cell. (2013) /tpc

Isolation and characterization of ethanol tolerant yeast strains

Putting dollar value on whaling

Title: Genetic Variation of Crabapples ( Malus spp.) found on Governors Island and NYC Area

YEAST Wrangling The Many Flavors of Brewing Yeast CURT WITTENBERG FOR SOCIETY OF BARLEY ENGINEERS OCTOBER 4, 2017

Chapter V SUMMARY AND CONCLUSION

Title: Development of Simple Sequence Repeat DNA markers for Muscadine Grape Cultivar Identification.

Temperature Adaptation Markedly Determines Evolution within the Genus Saccharomyces

Oregon Wine Advisory Board Research Progress Report

Petite Mutations and their Impact of Beer Flavours. Maria Josey and Alex Speers ICBD, Heriot Watt University IBD Asia Pacific Meeting March 2016

The Effect of ph on the Growth (Alcoholic Fermentation) of Yeast. Andres Avila, et al School name, City, State April 9, 2015.

Saccharomyces uvarum, a proper species within Saccharomyces sensu stricto

Supplementary Information. Thermal stress depletes energy reserves in Drosophila

Juice Microbiology and How it Impacts the Fermentation Process

The Effects of the Rate of Nitrogen Consumption on the Duration of Alcohol Fermentation Remain Unknown

Yeast. Jasper Akerboom Lost Rhino Brewing Company

RUST RESISTANCE IN WILD HELIANTHUS ANNUUS AND VARIATION BY GEOGRAPHIC ORIGIN

Specific Yeasts Developed for Modern Ethanol Production

MLF co-inoculation how it might help with white wine

Comparing performance of modern genotype imputation methods in different ethnicities

How yeast strain selection can influence wine characteristics and flavors in Marquette, Frontenac, Frontenac gris, and La Crescent

depend,: upon the temperature, the strain of

Analysing the shipwreck beer

Institute of Brewing and Distilling

Arthropod Management in California Blueberries. David Haviland and Stephanie Rill UC Cooperative Extension, Kern Co. Blueberry Field Day 20 May 2009

EAT ACCORDING TO YOUR GENES. NGx-Gluten TM. Personalized Nutrition Report

Kosovo Imports & Export of Fresh fruits and Vegetables, 2004

Dairy Outlook. December By Jim Dunn Professor of Agricultural Economics, Penn State University. Market Psychology

UPPER MIDWEST DAIRY NEWS

Marie Curie Actions IRSES Mid-term Report

SELECTION-GENETIC STUDYING ECONOMICSIGNS OF THE COTTON AND THE METH- ODSOF INCREASE OF EFFICIENCY OF CHOICE

GENOTYPIC AND ENVIRONMENTAL EFFECTS ON BREAD-MAKING QUALITY OF WINTER WHEAT IN ROMANIA

Effect of Rehydration Temperature of Active Dried Yeast on Wine Production and qualityl)

EVALUATION OF WILD JUGLANS SPECIES FOR CROWN GALL RESISTANCE

Chair J. De Clerck IV. Post Fermentation technologies in Special Beer productions Bottle conditioning: some side implications

Transcription:

Table S1. Summary of sequence strains, sequencing coverage, an spore viability. 1 Strain Nationality Locality Substrate Isolation ate Sequence strain Coverage Other strain Other Coverage Spore viability11 Notes Reference ZP513 Portugal Lisbon Q. pyrenaica Mar. 5 FM169 1 87% (787789) 6% (16) mixture of 5 bp an 36 bp reas 4 ZP537 Portugal L. Albufeira Q. faginea May 5 FM156 8% (39718) FM194 1 67% (7843) 11% (8) No MATa or HMR; ZP537 partially enoreuplicate but not FM194 4 ZP54 Portugal Aagoi Q. pyrenaica Jun. 5 FM157 73% (369665) % (4) reason for sterility unknown; 34 bp reas after trimming "GT" barcoe 4 ZP591 Portugal Cast. Vie Q. pyrenaica Aug. 5 FM19 94% (145954) FM171 1 8% (4544569) 94% (16) Portuguese reference strain; mixture of 3 bp an 36 bp reas (ZP591) 4 ZP594 Portugal A. Dez Q. faginea Sep. 5 FM178 1 84% (3138597) 88% (16) 4 ZP595 Portugal A. Dez Q. faginea Sep. 5 FM179 1 79% (587661) 9% () 4 ZP6 Portugal Arrábia Q. ilex Oct. 5 FM17 1 81% (38143) 1% (14) 4 ZP61 Portugal Arrábia Q. ilex (accorn) Oct. 5 FM173 1 73% (38874) 94% (16) 4 ZP63 Portugal Arrábia Q. ilex (leaf litter) Oct. 5 FM174 1 76% (5347358) 95% () 4 ZP65 Portugal Arrábia Q. faginea Oct. 5 FM16 71% (786785) % (1) No MAT or HML; 34 bp reas after trimming "CT" barcoe 4 ZP67 Portugal Arrábia Q. faginea Oct. 5 FM175 1 75% (314399) 1% (16) 4 ZP69 Portugal L. Albufeira Q. ilex Dec. 5 FM176 1 81% (76386) 1% (16) 4 ZP63 Portugal L. Albufeira Q. ilex Dec. 5 FM177 1 85% (44751) 88% (16) 4 ZP634 Portugal Cast. Vie Q. pyrenaica Jan. 6 FM166 68% (86451) % (8) No MATa or HMR; 34 bp reas after trimming "AT" barcoe 4 IFO18 Japan Mt. Daisen partially ecaye leaf < 199 IFO18 1% (reference) IFO18 67% (7133) 3 3 type strain an originally sequence strain 5 IFO199 Japan Mt. Daisen soil < 5 IFO199 89% (3318) 34 bp reas after trimming "GT" barcoe 6 IFO1991 Japan Mt. Daisen partially ecaye leaf < 5 IFO1991 87% (39481) 34 bp reas after trimming "TT" barcoe 6 IFO183 Japan Yakushima Islan partially ecaye leaf < 199 IFO183 86% (85464) very istant subspecies; mixture of 34 bp reas after trimming "CT" barcoe an 36 bp reas 5 W7 Switzerlan Waeenswil Lalleman wine strain < 1995 FM143 NA (635858) known hybri of S. cerevisiae an S. kuriavzevii; 34 bp reas after trimming "AT" barcoe 7, 8 CBS679 < 1913 FM154 NA (75549) % () hybri of S. cerevisiae an S. kuriavzevii; 34 bp reas after trimming "TT" barcoe 9 1 Single spore erivative. Wil erivative, presume iploi. 3 The reference sequence was assume correct an complete when analyzing other strains, an the Solexa ata was use only to estimate the error rate of the assemblies. 4 Sampaio JP, Gonçalves P. 8. Natural populations of Saccharomyces kuriavzevii in Portugal are associate with oak bark an are sympatric with S. cerevisiae an S. paraoxus. Appl Environ Microbiol 74: 144-15. 5 Kaneko Y, Bano I. 1991. Reexamination of Saccharomyces bayanus strains by DNA-DNA hybriization an electrophoretic karyotyping. IFO Res Commun 15: 3-41. 6 Mikata K. Japan National Institute of Technology an Evaluation Biological Resource Center (http://www.nbrc.nite.go.jp). 7 Schuetz M, Gafner J. 1994. Dynamics of the yeast strain population uring spontaneous alcoholic fermentation etermine by CHEF gel electrophoresis. Lett Appl Microbiol 19: 53-57. 8 González SS, Barrio E, Gafner J, Querol A. 6. Natural hybris from Saccharomyces bayanus an Saccharomyces kuriavzevii in wine fermentations. FEMS Yeast Res 6: 11-134. 9 Guilliermon A. 191. Deposite into CBS culture collection. 1 Coverage shows the percent of calle bases, relative to the IFO18 T reference sequence escribe in the Methos, while the number of non-aapter (no exact 15-mer hits) sequencing reas obtaine is in parentheses. 11 Spore viability shows the percent of viable spores with the number of spores teste in parentheses. 1

Table S. Summary of numbers of GAL sites available for various analyses. Gene Pseuogene (bp) 1 Coon (bp) S 3 S 4 Phylogenetics 5 All strains 6 Upstream 7 Coing 8 Downstream 9 YML53C 573 11 (.,.4) SUR7 99 11 (.4,.1) GAL8 1673 114 54 (.39,.6) 168 117 5 996 199 AIM3 936 6 (.19,.34) YPL47C 1569 355 (.1,.3) GAL4 34 156 346 (.49,.71) 1659 1339 48 155 176 GYP5 97 558 (.,.3) RPL36B 46 58 (.,.) KAP14 74 586 (.3,.6) GAL7 3369 354 78 (.83,.48) 36 35 71 135 GAL1 3369 561 133 (.98,.6) 573 55 35 486 GAL1 3369 714 164 (1.6,.3) 744 69 35 569 493 FUR4 19 436 (.14,.) POA1 534 13 (.1,.9) SIC1 864 194 (.1,.6) EMP46 1347 89 (.,.7) GAL 185 645 153 (1.4, saturate) 456 435 7 559 145 SRL 1179 4 (.64, 1.) EMP7 1995 464 (.1,.4) 1 Length of pseuogenes in IFO18 T (entire intergenic region between ajacent functional genes). Aligne bp remaining after incluing only fully aligne coons between ZP591, IFO18 T, S. bayanus, S. mikatae, S. paraoxus, an S. cerevisiae. 3 Synonymous sites between ZP591 an IFO18 T (Fig. ). 4 95% confience interval of average number of synonymous ifferences between ZP591 an IFO18 T (low, high) (Fig. ). 5 Number of bp in phylogenetic ata matrix with S. castellii an IFO183 ae (Fig. 1a, S3a). 6 Number of bp in phylogenetic ata matrix with full strain set (Fig. S4). 7 Number of upstream bp aligne between ZP591 an IFO18 T (Fig. S5). 8 Number of coing bp aligne between ZP591 an IFO18 T (Fig. S5). 9 Number of ownstream bp aligne between ZP591 an IFO18 T (Fig. S5). Missing ata was either not calculate or not applicable. Table S3. Constitutive expression of the GAL network in S. cervisiae is eleterious uner non-inucing conitions. Genotype % Raffinose (non-inuce) % Glucose (represse) % Galactose (inuce) GAL8 +. ±.1. ±.1. ±.1 gal8 -.116 ±.3 -.8 ±.3 +.69 ±.3 Malthusian selection coefficients are reporte ± s.. with N = 1 as escribe in the Methos. Note that mutants lacking the Gal8 co-repressor are very unfit in non-inucing conitions, as previously observe in 5% glycerol by MacLean 1 in a stuy of GAL mutants create by the systematic eletion project. 1 Maclean RC. 7. Pleiotropy an GAL pathway egeneration in yeast. J Evol Biol : 1333-1338. Giaever G et al.. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387-391.

Table S4. List of strains use in experiments. Strain Species Population Derive from Genotype Use Notes FM19 S. kuriavzevii Portuguese ZP591 MATa/MAT Table S1 1 FM171 S. kuriavzevii Portuguese ZP591 MATa/MAT Table S1 FM197 S. kuriavzevii Japanese IFO18 T MAT ho ::natmx 3 FM198 S. kuriavzevii Japanese IFO18 T MATa ho ::natmx 3 FM119 S. kuriavzevii Portuguese FM171 MATa ho ::kanmx 3 FM111 S. kuriavzevii Portuguese FM171 MAT ho ::kanmx 3 FM1111 S. kuriavzevii hybri FM197/FM119 MATa/MAT ho ::kanmx/ho ::natmx Fig. S1 4 FM111 S. kuriavzevii hybri FM198/FM111 MATa/MAT ho ::kanmx/ho ::natmx Fig. S1 4 FM113 S. kuriavzevii Portuguese FM119 MATa ho ::kanmx ura3-5 FM1131 S. kuriavzevii Portuguese FM111 MAT ho ::kanmx trp1-6 FM114 S. kuriavzevii Portuguese FM113 MATa ho ::kanmx ura3- trp1 ::ScerURA3 + 7 FM1146 S. kuriavzevii Portuguese FM114 MATa ho :kanmx ura3- trp1 ::ScerGAL3 + 8 FM1153 S. kuriavzevii Portuguese FM171/FM1146 MATa/MAT ho ::kanmx/ho + ura3- /URA3 + trp1 ::ScerGAL3 + /TRP1 + 9 FM1157 S. kuriavzevii Portuguese FM113/FM1131 MATa/MAT ho ::kanmx/ho ::kanmx ura3- /URA3 + trp1- /TRP1 + 9 FM1159 S. kuriavzevii Portuguese FM1153 MATa ho ::kanmx ura3- trp1 ::ScerGAL3 + Fig. 3c FM116 S. kuriavzevii Portuguese FM1153 MATa ho ::kanmx ura3- trp1 ::ScerGAL3 + Fig. 3c FM1161 S. kuriavzevii Portuguese FM1153 MATa ho ::kanmx ura3- trp1 ::ScerGAL3 + Fig. 3c FM116 S. kuriavzevii Portuguese FM1153 MATa ho ::kanmx ura3- trp1 ::ScerGAL3 + Fig. 3c FM1163 S. kuriavzevii Portuguese FM1153 MATa ho ::kanmx ura3- trp1 ::ScerGAL3 + Fig. 3c FM1164 S. kuriavzevii Portuguese FM1153 MATa ho ::kanmx ura3- trp1 ::ScerGAL3 + Fig. 3c FM1165 S. kuriavzevii Portuguese FM1153 MATa ho ::kanmx ura3- trp1 ::ScerGAL3 + Fig. 3c FM1166 S. kuriavzevii Portuguese FM1153 MATa ho ::kanmx ura3- trp1 ::ScerGAL3 + Fig. 3c FM1183 S. kuriavzevii Portuguese FM1157 MATa ho ::kanmx ura3- trp1- Fig. 3c FM1184 S. kuriavzevii Portuguese FM1157 MATa ho ::kanmx ura3- trp1- Fig. 3c FM1185 S. kuriavzevii Portuguese FM1157 MATa ho ::kanmx ura3- trp1- Fig. 3c FM1186 S. kuriavzevii Portuguese FM1157 MATa ho ::kanmx ura3- trp1- Fig. 3c FM1187 S. kuriavzevii Portuguese FM1157 MATa ho ::kanmx ura3- trp1- Fig. 3c FM1188 S. kuriavzevii Portuguese FM1157 MATa ho ::kanmx ura3- trp1- Fig. 3c FM1189 S. kuriavzevii Portuguese FM1157 MATa ho ::kanmx ura3- trp1- Fig. 3c FM119 S. kuriavzevii Portuguese FM1157 MATa ho ::kanmx ura3- trp1- Fig. 3c FM18 S. cerevisiae laboratory BY474 MATa ura3- lys- P TDH3-yEGFP-T CYC1 Table S3 1 FM183 S. cerevisiae laboratory BY474 MATa ura3- lys- P TDH3-yBGFP-T CYC1 Table S3 11 FM184 S. cerevisiae laboratory FM18 MATa ura3- lys- P TDH3-yEGFP-T CYC1 GAL8 + Table S3 1 FM185 S. cerevisiae laboratory FM18 MATa ura3- lys- P TDH3-yEGFP-T CYC1 GAL8 + Table S3 1 FM186 S. cerevisiae laboratory FM18 MATa ura3- lys- P TDH3-yEGFP-T CYC1 GAL8 + Table S3 1 FM187 S. cerevisiae laboratory FM18 MATa ura3- lys- P TDH3-yEGFP-T CYC1 gal8- Table S3 13 FM188 S. cerevisiae laboratory FM18 MATa ura3- lys- P TDH3-yEGFP-T CYC1 gal8- Table S3 13 FM189 S. cerevisiae laboratory FM18 MATa ura3- lys- P TDH3-yEGFP-T CYC1 gal8- Table S3 13 FM19 S. cerevisiae laboratory FM18 MATa ura3- lys- P TDH3-yEGFP-T CYC1 GAL3 + Fig. 3c 14 FM191 S. cerevisiae laboratory FM18 MATa ura3- lys- P TDH3-yEGFP-T CYC1 GAL3 + Fig. 3c 14 FM19 S. cerevisiae laboratory FM18 MATa ura3- lys- P TDH3-yEGFP-T CYC1 GAL3 + Fig. 3c 14 FM193 S. cerevisiae laboratory FM18 MATa ura3- lys- P TDH3-yEGFP-T CYC1 gal3- Fig. 3c 15 FM194 S. cerevisiae laboratory FM18 MATa ura3- lys- P TDH3-yEGFP-T CYC1 gal3- Fig. 3c 15 FM195 S. cerevisiae laboratory FM18 MATa ura3- lys- P TDH3-yEGFP-T CYC1 gal3- Fig. 3c 15 FM133 S. kuriavzevii Portuguese FM113 MATa ho ::kanmx ura3- gal8 ::ScerURA3 + 16 FM1334 S. kuriavzevii Portuguese FM113 MATa ho ::kanmx ura3- gal8 ::ScerURA3 + 16 FM1335 S. kuriavzevii Portuguese FM113 MATa ho ::kanmx ura3- gal8 ::ScerURA3 + 16 FM1336 S. kuriavzevii Portuguese FM113 MATa ho ::kanmx ura3- gal8 ::ScerURA3 + 16 FM1337 S. kuriavzevii Portuguese FM113 MATa ho ::kanmx ura3- gal8 ::ScerURA3 + 16 FM1338 S. kuriavzevii Portuguese FM113 MATa ho ::kanmx ura3- gal8 ::ScerURA3 + 16 FM134 S. kuriavzevii Portuguese FM113 MATa ho ::natmx ura3- Fig. 3b 17, 18 FM1343 S. kuriavzevii Portuguese FM113 MATa ho ::natmx ura3- Fig. 3b 17 FM1345 S. kuriavzevii Portuguese FM113 MATa ho ::natmx ura3- Fig. 3b 17 FM1346 S. kuriavzevii Portuguese FM113 MATa ho ::natmx ura3- Fig. 3b 17 FM1348 S. kuriavzevii Portuguese FM113 MATa ho ::natmx ura3- Fig. 3b 17 FM1351 S. kuriavzevii Portuguese FM113 MATa ho ::kanmx ura3- gal8 Fig. 3b 19 FM135 S. kuriavzevii Portuguese FM113 MATa ho ::kanmx ura3- gal8 Fig. 3b 19 FM1353 S. kuriavzevii Portuguese FM113 MATa ho ::kanmx ura3- gal8 Fig. 3b 19 FM1354 S. kuriavzevii Portuguese FM1134 MATa ho ::kanmx ura3- gal8 Fig. 3b 19 FM1355 S. kuriavzevii Portuguese FM1135 MATa ho ::kanmx ura3- gal8 Fig. 3b 19 FM1356 S. kuriavzevii Portuguese FM1135 MATa ho ::kanmx ura3- gal8 Fig. 3b 19 FM1357 S. kuriavzevii Portuguese FM1136 MATa ho ::kanmx ura3- gal8 Fig. 3b 19 FM1358 S. kuriavzevii Portuguese FM1137 MATa ho ::kanmx ura3- gal8 Fig. 3b 19 FM1359 S. kuriavzevii Portuguese FM1137 MATa ho ::kanmx ura3- gal8 Fig. 3b 19 FM136 S. kuriavzevii Portuguese FM1137 MATa ho ::kanmx ura3- gal8 Fig. 3b 19 FM1361 S. kuriavzevii Portuguese FM1138 MATa ho ::kanmx ura3- gal8 Fig. 3b 19 FM136 S. kuriavzevii Portuguese FM1138 MATa ho ::kanmx ura3- gal8 Fig. 3b 19 1 Lab stock of wil ZP591 isolate; Portuguese reference strain. Homozygote of ZP591 erive from a single spore. 3 Heterothallic single spore isolate after eletion of HO. 4 F 1 Japanese/Portuguese strain sporulate to generate F segregants. 5 Start coon to stop coon eletion mae transforming with PCR prouct an selecting against URA3 +. 6 Start coon to stop coon eletion mae transforming with PCR prouct an selecting against TRP1 +. 7 Start coon to stop coon replacement mae transforming with PCR prouct an selecting for URA3 + plus its intergenic sequences. 8 Start coon to stop coon replacement mae transforming with PCR prouct containing ScerGAL3 + plus its intergenic sequences an selecting against URA3 +. 9 Cross use to generate panel of experimental strains. 1 GFP competition strain 1. 11 BFP competition strain 1. 1 GAL8 + re-introuce in triplicate strains to MATa ura3- lys- P TDH3-yEGFP-T CYC1 gal8 ::URA3 + by transforming with PCR prouct an selecting against URA3 +. 13 URA3 + remove from MATa ura3- lys- P TDH3-yEGFP-T CYC1 gal8 ::URA3 + by transforming with engineere oligonucleoties an selecting against URA3 +. 14 GAL3 + re-introuce in triplicate strains to MATa ura3- lys- P TDH3-yEGFP-T CYC1 gal3 ::URA3 + by transforming with PCR prouct an selecting against URA3 +1. 15 URA3 + remove from MATa ura3- lys- P TDH3-yEGFP-T CYC1 gal3 ::URA3 + by transforming with engineere oligonucleoties an selecting against URA3 +1. 16 Start coon to stop coon replacement mae transforming with PCR prouct an selecting for ScerURA3 + plus its intergenic sequences. 17 Drug marker change by selecting for natmx, control competition strains compete against parental FM113. 18 Competition strain with no etectable efect. 19 Start coon to stop coon eletion mae transforming with PCR prouct an selecting against URA3 +, compete against FM134. Sampaio JP, Gonçalves P. 8. Natural populations of Saccharomyces kuriavzevii in Portugal are associate with oak bark an are sympatric with S. cerevisiae an S. paraoxus. Appl Environ Microbiol. 74: 144-15. 1 Hittinger CT, Carroll SB. 7. Gene uplication an the aaptive evolution of a classic genetic switch. Nature 449: 677-681. 3

Figure S1 5 4 Number of F segregants 3 Observe Expecte 1 1 3 4 Number of functional GAL + loci Figure S1. The S. kuriavzevii GAL loci segregate inepenently. Histogram of the number of functional GAL + loci recovere from F segregants from a cross of a Gal + Portuguese strain an a Gal - Japanese strain. Spore viability was high (8%), an alleles at the GAL loci assort inepenently (P =.36). Blue, observe; re, expecte. See attache. 4

oi: 1.138/nature8791 Supplementary Information accompanies the paper on. Table S1. Summary of sequence strains, sequencing coverage, an spore viability. See attache. Table S. Summary of numbers of GAL sites available for various analyses. See attache. Table S3. Constitutive expression of the GAL network in S. cerevisiae is eleterious uner non-inucing conitions. See attache. Table S4. List of strains use in experiments. See attache. Figure S1. The S. kuriavzevii GAL loci segregate inepenently. Histogram of the number of functional GAL+ loci recovere from F segregants from a cross of a Gal+ Portuguese strain an a GalJapanese strain. Spore viability was high (8%), an alleles at the GAL loci assort inepenently (P =.36). Blue, observe; re, expecte. See attache. Figure S. The wil isolates of S. kuriavzevii are not hybris. Proportion of hits to each Saccharomyces species (y-axis) for each gene (x-axis, sorte by systematic name in S. cerevisiae) base on Solexa short-rea ata from the Portuguese reference strain (a), a known1 S. cerevisiae/s. kuriavzevii hybri (b), an another S. cerevisiae/s. kuriavzevii hybri not isolate from the wil (c). By efinition, the sum of the proportion of hits from each species is 1. for each gene. Therefore, the closer the value of S. kuriavzevii (blue iamon) is to 1. for a given gene, the more confiently introgression can be exclue. In the two hybri strains, regions are clearly evient where only one species has contribute genetic material, as are likely regions of aneuploiy. Note that Database S1 contains the complete unfiltere ata for all strains, as well as analyses with more liberal mismatch criteria, but no convincing evience of introgression. See attache. Figure S3. Relaxe molecular clock estimation of coalescence of GAL an non-gal loci. Estimation of 5

a.514.644 S. cerevisiae.5.88.644 S. paraoxus.63.1711.1158 S. mikatae S. kuriavzevii ZP591.1883.76.113.581 S. kuriavzevii IFO18 T.581 S. kuriavzevii IFO183.589 S. bayanus.447 S. castellii b.395.455 S. cerevisiae.3.36.455 S. paraoxus.85 S. mikatae.44.4 S. kuriavzevii ZP591.166.77.14 S. kuriavzevii IFO18 T.4.9 S. kuriavzevii IFO183.1654 S. bayanus c.38 S. castellii.1..37 ZP591 Portuguese Population.94.39.8 IFO18 T Japanese Population.141 IFO183 Figure S3. Relaxe molecular clock estimation of coalescence of GAL an non-gal loci. Estimation of relative timing of coalescence of Saccharomyces GAL genes an pseuogenes (a), an equivalent number of sites selecte ranomly from non-gal genes (b), an an equivalent number of sites selecte ranomly from non-gal genes using all strains of S. kuriavzevii shown in Fig. 1c. Scales show estimate substitutions per site; branch lengths are printe immeiately above or below their respective internoes or above the population whose coalescence they estimate. See attache. 6

98/91 S. bayanus S. kuriavzevii S. mikatae 1/1 99/84 99/1 99/1 S. paraoxus 99/1 99/1 S. cerevisiae S. castellii.8 Figure S4. No sequence strains of Saccharomyces support introgression as the source of the functional S. kuriavzevii GAL genes. Phylogeny built from aligne an concatenate GAL genes an pseuogenes from Fig. 1a with strains ae from the impute Q ataset of the Saccharomyces Genome Resequencing Project, which inclues the previously escribe species of Saccharomyces boularii an Saccharomyces cariocanus as strains of S. cerevisiae an S. paraoxus, respectively. Values correspon to Bayesian posterior probabilities an bootstrap values obtaine with maximum likelihoo, respectively. Scales show estimate substitutions per site uner the Bayesian framework. Internoes corresponing to recognize species are arker, while Portuguese (blue) an Japanese (re) lineages are colore. See attache. 7

Figure S5 a b.4.4.3 GAL8.3 GAL4...1 c.6.1 substitutions per site; branch lengths are printe immeiately above or below their respective internoes or above the population whose coalescence they estimate. See attache. Figure S4. No sequence strains of Saccharomyces support introgression as the source of the functional S. kuriavzevii GAL genes. Phylogeny built from aligne.6 an concatenate GAL genes an pseuogenes.5.4.3..1 GAL7 from Fig. 1a with strains ae from the impute Q ataset of the Saccharomyces Genome.5 GAL1 GAL1 GAL Resequencing Project, which inclues the previously escribe species of Saccharomyces boularii an.4 Saccharomyces cariocanus as strains of S. cerevisiae an S. paraoxus, respectively. Values correspon.3 to Bayesian posterior probabilities an bootstrap values obtaine with maximum likelihoo, respectively.. Scales show estimate substitutions per site uner the Bayesian framework. Internoes corresponing to.1 recognize species are arker, while Portuguese (blue) an Japanese (re) lineages are colore. See attache. Figure S5. The ivergence of the GAL loci contrasts sharply with the rest of the genome at nearly all sites. Sliing winow estimates of pairwise ivergence () between ZP591 an IFO18 T : GAL8 (a), GAL4 (b), GAL7/GAL1/GAL1 (c), an GAL (). GAL coing regions are re an oriente from left to right (except GAL7 an GAL1), while intergenic regions are black. Tick marks on the x-axis represent 1 aligne bps, an a ashe line shows the genome-wie backgroun of.11. Note that nearly all promoters an untranslate regions also possess elevate ivergence levels. See attache. Database S1. Complete supporting ata for Figure S. See Excel file. Database S. Divergence of all genes between Japanese (IFO18 T ) an Portuguese (ZP591) reference strains. See Excel file. 1 Gonzalez, S. S., Barrio, E., Gafner, J. & Querol, A. Natural hybris from Saccharomyces cerevisiae, Saccharomyces bayanus an Saccharomyces kuriavzevii in wine fermentations. FEMS Yeast Res 6, 11-134, (6). Liti, G. et al. Population genomics of omestic an wil yeasts. Nature 458, 337-341, (9). 8

1 Gonzalez, S. S., Barrio, E., Gafner, J. & Querol, A. Natural hybris from Saccharomyces cerevisiae, Saccharomyces bayanus an Saccharomyces kuriavzevii in wine fermentations. FEMS Yeast Res 6, 11-134, (6). Liti, G. et al. Population genomics of omestic an wil yeasts. Nature 458, 337-341, (9). 9