Physiological Gradient in Avocado Fruit

Similar documents
Physiological gradients in fleshy pericarp of avocado

FRUIT GROWTH IN THE ORIENTAL PERSIMMON

Distribution of Inorganic Constituents in Avocado Fruits

TEMPERATURE CONDITIONS AND TOLERANCE OF AVOCADO FRUIT TISSUE

THE EFFECT OF ETHYLENE UPON RIPENING AND RESPIRATORY RATE OF AVOCADO FRUIT

Ripening, Respiration, and Ethylene Production of 'Hass' Avocado Fruits at 20 to 40 C 1

Chilling Sensitivity of Avocado Fruit at Different Stages of the Respiratory Climacteric 1

ALBINISM AND ABNORMAL DEVELOPMENT OF AVOCADO SEEDLINGS 1

A Review and Background of the Avocado Maturity Standard

Relationship between Mineral Nutrition and Postharvest Fruit Disorders of 'Fuerte' Avocados

COMPARISON OF CORE AND PEEL SAMPLING METHODS FOR DRY MATTER MEASUREMENT IN HASS AVOCADO FRUIT

SELF-POLLINATED HASS SEEDLINGS

Avocado sugars key to postharvest shelf life?

GROWTH AND DEVELOPMENT OF THE AVOCADO FRUIT

Takao IcHli and Kenichi HAMADA Faculty of Agriculture, Kobe University, Kobe and Agricultural Experiment Station of Hyogo Prefecture, Sumoto

CORRELATIONS BETWEEN CUTICLE WAX AND OIL IN AVOCADOS

Further investigations into the rind lesion problems experienced with the Pinkerton cultivar

What Went Wrong with Export Avocado Physiology during the 1996 Season?

D Lemmer and FJ Kruger

Studies in the Postharvest Handling of California Avocados

Response of 'Hass' Avocado to Postharvest Storage in Controlled Atmosphere Conditions

AVOCADO FRUIT MATURITY

RESEARCH ON AVOCADO PROCESSING AT THE UNIVERSITY OF CALIFORNIA, DAVIS

(36) PROHEXADIONE-CALCIUM AFFECTS SHOOT GROWTH AND YIELD OF LEMON, ORANGE AND AVOCADO DIFFERENTLY

A storage temperature regime for South African export avocados

Flowering and Fruiting Morphology of Hardy Kiwifruit, Actinidia arguta

Determining the Optimum Time to Pick Gwen

NEW ZEALAND AVOCADO FRUIT QUALITY: THE IMPACT OF STORAGE TEMPERATURE AND MATURITY

The Role of Ethylene in Browning of Avocado Pulp during cold storage

THE EFFECT OF GIRDLING ON FRUIT QUALITY, PHENOLOGY AND MINERAL ANALYSIS OF THE AVOCADO TREE

Ripening and Conditioning Fruits for Fresh-cut

7. LOCALIZATION OF FRUIT ON THE TREE, BRANCH GIRDLING AND FRUIT THINNING

THE GROWTH OF THE CHERRY OF ROBUSTA COFFEE

FALL TO WINTER CRANBERRY PLANT HARDINESS

Progress Report on Avocado Breeding

A new approach to understand and control bitter pit in apple

SYMPTOMS OF CONTROLLED ATMOSPHERE DAMAGE IN AVOCADOS

SUMMER AVOCADO VARIETIES

Fruit Ripening & Retail Handling Workshop. Why use cold storage? Ripe Strawberries After 7 days. Respiration and Temperature.

1-Methyl cyclopropene (1-MCP): An alternative for controlled atmosphere storage of South African export avocados

NITROGEN ALLOCATION WITHIN THE 'HASS' AVOCADO

Limitations to avocado postharvest handling. Factors to consider when ripening avocado

INFLUENCE OF THIN JUICE ph MANAGEMENT ON THICK JUICE COLOR IN A FACTORY UTILIZING WEAK CATION THIN JUICE SOFTENING

Melon Quality & Ripening

Factors to consider when ripening avocado

KINDSTEDT: JOURNAL OF AOAC INTERNATIONAL VOL. 84, NO. 2, Moisture Variations in Brine-Salted Pasta Filata Cheese

Seasonal changes on chemical and physical parameters in six avocado (Persea americana Mill) cultivars grown in Chile

Peach and Nectarine Cork Spot: A Review of the 1998 Season

Development of a New Method for Measuring Minimum Maturity of Avocados

SUGAR AND ACID METABOLISM IN CITRUS FRUIT. Karen E. Koch 1

Fruit Set, Growth and Development

Low temperature shipping and cold chain management of Fuerte avocados: An opportunity to reduce shipping costs

Characterization of Eleven Late-Maturing Selections of Avocado (Persea americana Mill.)

PRESERVATION OF FRUITS AND VEGETABLES BY REDUCTION OF ETHYLENE GAS

Temperature Regimes for Avocados Grown In Kwazulu-Natal

Artificial Ripening of Sugar Pine Seeds

Morphological Characteristics of Greek Saffron Stigmas from Kozani Region

Proceedings of The World Avocado Congress III, 1995 pp

Instructor: Stephen L. Love Aberdeen R & E Center 1693 S 2700 W Aberdeen, ID Phone: Fax:

As with many biological issues, defining terms such as

POTATOES USA / SNAC-INTERNATIONAL OUT-OF-STORAGE CHIP QUALITY MICHIGAN REGIONAL REPORT

THE MANIFOLD EFFECTS OF GENES AFFECTING FRUIT SIZE AND VEGETATIVE GROWTH IN THE RASPBERRY

Percent of the combined rankings of the reasons why consumers purchase peaches. 35.0

EFFECT OF CURING AND SEAL PACKAGING ON PEEL AND PULP WEIGHT LOSS PERCENTAGE OF SCUFFING DAMAGED AND UNDAMAGED CITRUS FRUIT.

TB70: Physical and Chemical Changes Associated with the Development of the Lowbush Blueberry Fruit Vaccinium angustifolium Ait.

Hot water treatment of avocado fruit to induce cold tolerance

Relationship between fruit pulp mineral composition and the ripening profiles of South African Hass avocado fruit

Influence of GA 3 Sizing Sprays on Ruby Seedless

OF THE VARIOUS DECIDUOUS and

Maturity Studies of Avocado Fruit Based on Picking Dates and Dry Weight

FLOWERING OF TOMATO IN RELATION TO PRE-PLANTING LOW TEMPERATURES

UNIVERSITY OF CALIFORNIA AVOCADO CULTIVARS LAMB HASS AND GEM MATURITY AND FRUIT QUALITY RESULTS FROM NEW ZEALAND EVALUATION TRIALS

UNITED STATES STANDARDS FOR WHOLE DRY PEAS¹

FOR GRADING FLORIDA SWEET CORN

EQUIPMENT FOR MAKING BABCOCK TEST FOR FAT IN MILK

Mastering Measurements

Fruit Ripening & Ethylene Management Workshop. Why use cold storage? Chronological vs Physiological. Effect of temperatures on strawberries

Using Growing Degree Hours Accumulated Thirty Days after Bloom to Help Growers Predict Difficult Fruit Sizing Years

Hass Seasonality. Avocado Postharvest Handling. Avocado Postharvest Handling. Mary Lu Arpaia University of California, Riverside

OF MANGOS RELATION OF TIME OF HARVEST ON RESPIRATION, disorders and spongy tissue and did not present a

Avocado Fruit Abnormalities and Defects Revisited

Utilization of Modified Atmosphere Packaging to Increase Shelf Life

Temperature management of avocados an integrated approach

Acta Chimica and Pharmaceutica Indica

CAUTION!!! Do not eat anything (Skittles, cylinders, dishes, etc.) associated with the lab!!!

Problems affecting seeds and seedlings

Weight, g Respiration, µl/g-h Firmness, kg/cm

Macro nutrient accumulation and requirement of Hass avocado trees

AVOCADO FRUIT GROWTH AND MATURITY IN TWO NATAL LOCALITIES

EFFECTS OF HIGH TEMPERATURE AND CONTROLLED FRUITING ON COTTON YIELD

Stages of Fruit Development. Maturation The stage of development leading to the attainment of physiological or horticultural maturity.

Ozone experimentation one the shelf life of various fruits

Lecture 4. Factors affecting ripening can be physiological, physical, or biotic. Fruit maturity. Temperature.

For your review, this is the first five pages of Chapter 7 of The Original Encyclopizza.

MANGO PERFORMANCE BENCHMARK REPORT

Development of Seeded and Seedless Avocado Fruits 1

Post-Harvest Vapour Heat Treatment of Hass and Fuerte Avocado

Effect of Storage Period and Ga3 Soaking of Bulbs on Growth, Flowering and Flower Yield of Tuberose (Polianthes Tuberosa L.) Cv.

Effect of SPT Hammer Energy Efficiency in the Bearing Capacity Evaluation in Sands

EFFECT OF TOMATO GENETIC VARIATION ON LYE PEELING EFFICACY TOMATO SOLUTIONS JIM AND ADAM DICK SUMMARY

Transcription:

California Avocado Society 1985 Yearbook 69: 137-144 Physiological Gradient in Avocado Fruit C. A. Schroeder Deportment of Biology, University of California, Los Angeles. Studies on fruit maturity of avocado and related topics of subsequent storage and handling procedures have resulted in a substantial literature concerning the morphological and biochemical sequences which occur in the fruit structure. The unique high oil content of the fruit has stimulated extensive investigations into the nature of the constituents which are involved in the development of this oil, and the biochemical sequences which are associated with the dramatic climacteric respiration curve and softening process (2). The extensive research on oil formation and accumulation in the developing fruit generally has considered only the entire fruit as a basis for sampling. Likewise the majority of investigations on the biochemical pathways to explain the physiological behavior of the fruit has utilized mostly composite samples taken from the fruit as a whole without particular reference to specific positions of tissues within the fruit. Determination of fruit maturity in avocado has been related for the most part to increase in oil content of the fruit. Legal standards for fruit maturity have been described on the basis of tissue samples from several fruits. More recently, critical evaluations of fruit maturity have been based on fruit size and dry weight of pericarp tissue (6, 13). This has called attention to the relationship of dry weight and oil content as a reasonable criterion for time of harvest and legal maturity. A series of problems concerned with fruit development such as failure of uniform softening in various tissues, the appearance of stony layers in otherwise soft tissue, and tissue discoloration in storage have provoked more detailed investigations on specific tissues. The present study inquires into possible physiological gradients within the fruit which may be related to these problems. Methods The method utilized in this investigation consisted of sampling individual avocado fruit of various sizes by use of a cork-borer to obtain cylinders of tissue from specific points in the fruit. These cylinders 8 mm in diameter were then cut transversely into shorter cylinders usually 0.5 to 1.0 cm in length. The fresh and dry weight of each small cylinder was obtained with a Mettler balance. The tissue cylinders were dried in a microwave oven for 20 minutes at which point the dry weight was determined and the percentage of oil was calculated.

Observations While some variations exist in dry weight between comparable samples of fruit of apparently the same stage of development (Fig. 1), a general and essentially reliable trend of data warrants its utilization to explain some aspects of fruit behavior. A static view of the typical distribution of dry weight (oil content) at specific points of a Hass fruit collected on February 1 is given in Figure 2. The points of sampling are depicted in the diagram of a longitudinal plane section of the fruit. Samples taken at right angles or behind and in front of the longitudinal section are shown along the side of the diagram. A marked gradient is noted in oil content between the tissue near the stem insertion (31.6 percent) and the seed (16.8 percent). The points of highest oil content

are scattered in the pericarp near the rounded end of the seed. Another general observation is the comparative higher concentration of oil in the mid-pericarp area surrounding the seed. There is less oil just beneath the skin, a higher concentration in the middle fleshy portion, and continuing inward, a comparatively lower accumulation of oil along any given section. This internal-external gradient differs at the stem end where a single direct gradient from high to low concentration is noted. The fleshy tissue immediately around the seed shows a greater amount of oil at the apical (rounded) end and lowest oil content near the pointed end (Fig. 3). The peripheral tissue just beneath the skin appears to be rather uniform in character with a slightly higher oil content near the stem insertion and comparatively lower amounts near the apex of the fruit. The intermediate tissue between the skin and the seed is generally and uniformly higher in oil throughout the fruit. It is apparent that there is not a uniform distribution of dry weight in the several parts and tissues of the avocado fruit at any stage of development. One notes the high dry weight percentage or oil content near the stem insertion (Fig. 4). Following the tissue from this point directly toward the pointed end of the seed there is a distinctive and gradual reduction in oil along this axis. The lowest figure for dry weight of the entire fruit is in the tissue surrounding the pointed end of the seed. This gradient from stem to seed is general and consistent in fruits with a short neck such as Hass. The gradient is frequently more pronounced in slightly necked specimens of Pinkerton and dramatically

demonstrated in the unusually long necked fruit from a seedling tree (1-491) in which a differential oil content of 15.7 percent exists between the point of stem insertion and the seed.

Discussion Physiological gradients within fleshy fruits have been reported for several fleshy fruit species. Marked differences in sugar content and acidity exist between the upper half, or stem end, and the lower, or stylar, half of the citrus fruit (1, 5). The lower end of the orange fruit, the stylar end as it hangs on the tree, has more sugar and more acid than the stem end. The stem end of some oranges is more susceptible to crystallization and abnormal drying compared with the apical half. Similarly there is a gradient of vitamin C content with a greater concentration in the stem half of orange and grapefruit compared with the stylar halves. There is a comparable gradient of vitamin C showing a higher concentration around the central axis and a lesser amount in the juice located just beneath the peel of orange (14). Similar marked differences are noted in sugar content in different portions of cantaloupe, casaba, honeydew, Persian melons (13), and watermelon (7). The tomato exhibits a decrease in calcium near the distal or stylar end of the fruit which is associated with some forms of necrosis (16).

Without doubt, there are many differences in structure and metabolic activity which eventually will be demonstrated within the avocado fruit. Specific points of normal and abnormal physiological activity possibly can be related to problems of development and fruit maturation during its growth on the tree and in its post-harvest responses. Physiological gradients which indicate differential development or accumulation of specific elements or organic molecules can suggest accumulations or deficiencies of substances which might explain the responses of the fruit at various periods in its development. The significance of the variation in dry weight or oil content can be related to observations on some problems of irregular fruit softening in avocado. The failure of fruit tissue to soften uniformly has been reported from Israel (8), California, and South Africa (9, 10, 11). The calcium relationships within the fruit tissue have been associated with the abnormal premature softening of the apical end of some avocado varieties (3, 15). Especially among Mexican types, there is a physiological weakness or a deficiency within the tissue at the stylar end of the fruit. The data in the present study support the idea of the highest accumulation of oil in this tissue near the apical end. Thus, if high oil content is associated with fruit softening and maturation, then one will expect fruit ripening to be initiated in the apical end. Empirical observations in several varieties indicate this maturation and breakdown of the apical end while the stem end is still firm. In contrast, there are some seasons in which the stem end of long necked varieties, such as Pinkerton, will soften prior to maturation of the other tissues. This could be related to the comparatively high oil content of the tissue around the stem insertion. A similar premature stem-end softening is sometimes noted in the variety Ettinger in Israel. A problem which has been reported on several occasions for the Fuerte fruit has been uneven softening of the pericarp at various points, especially in the basal or stem half of the fruit (11). The hard, lumpy tissue is noted to be lighter in color compared with the normal soft tissue. Such "lumpy-tissue" frequently surrounds the pointed end of the seed. It is in this area that lower oil concentration is detected. If one assumes that oil content is a factor in tissue maturation, then the gradient in oil in the several parts of the avocado fruit could be related to the problems of uneven softening of I the tissues. Literature Cited 1. Bartholomew, E. T. 1941. Unequal distribution of soluble solids in citrus fruits. Plant Physiol. 16: 293-312. 2. Biale, J. B., and R, E. Young. 1971. The avocado pear. In: The Biochemistry of Fruits and their Products. Food Science and Technology, ed. A.C. Hulme. Vol. 2, pp. 1-63. Academic Press, New York. 3. Chaplin, G. R. 1983. Chilling injury in stored avocado. Proc. 2nd Australian Avocado Res. Workshop, Bogangar, N. S. W., pp. 111-116. 4. Cummings, K., and C. A. Schroeder. 1943. Anatomy of the avocado fruit. Calif. Avocado Soc. Yearbook 1942: 56-64.

5. Haas, A. R. C., and L. J. Klotz. 1935, Physiological gradients in citrus fruits. Hilgardia 9: 179-217. 6. Lee, Seung-Koo. 1981. Methods for percentage oil analysis of avocado fruits. Calif. Avocado Soc. Yearbook 65: 133-141. 7. MacGillivray, J. H. 1947. Soluble solids content of different regions of watermelons. Plant Physiol. 22: 637-640. 8. Oppenheimer, C. A. 1960. Partial non-softening of avocado fruit. Jour. Agri. Res. Sta. Israel Ktavim 10: 15-20. 9. Schroeder, C. A. 1981. Sclerocarpelosis in avocado fruit. Calif. Avocado Soc. Yearbook 65: 125-131. 10. Schroeder, C. A. 1984. The avocado fruit unique, useful, problematical. In: Atherton Growers Federation. 1984 National Australian Avocado Field Days Conference Papers. 11. Schroeder, C. A. 1985. Aberrant fruit development in avocado. So. Africa Avocado Growers Assoc. Yearbook 8: 25-27. 12. Scott, G. W., and J. H. MacGillivray. 1940. Variation in solids of the juice from different regions in melon fruits. Hilgardia 13: 67-79. 13. Sweet, R. H. 1955. Official method for the determination of oil in avocados. Calif. Dept. Agri. Bull. 44: 37. 14. Ting, S. V. 1958. Chemical constituents of Citrus fruits as related to quality. Florida Agri. Exper. Sta. Ann. Rpt. 1958: 251. 15. Van Lelyveld, L. J. 1978. Physiological and biochemical factors associated with Fuerte fruit development. So. African Avocado Growers Assoc. Res. Rpt. 2: 39-41. 16. Wiersum, L. K. 1966. Calcium content of fruits and storage tissues in relation to the mode of water supply. Acta Bot. Neerl. 15: 406-118.