ADVANCED ANALYTICAL SENSORY CORRELATION TOWARDS A BETTER MOLECULAR UNDERSTANDING OF COFFEE FLAVOUR

Similar documents
The multiple role of polyphenol chemistry in coffee associated with quality attributes

Trends in Understanding the Science & Technology of Cocoa, Coffee, and Tea

UNDERSTANDING FAULTS IN WINE BY JAMIE GOODE

Analysis of Dairy Products, Using SIFT-MS

220th ACS Syposium, Washington, August 20-24, 2000 Imre Blank

When Machine Tastes Coffee: Instrumental Approach To Predict the Sensory Profile of Espresso Coffee

Sensory Quality Measurements

Characterisation of New Zealand hop character and the impact of yeast strain on hop derived compounds in beer

ADVANCED BEER AROMA ANALYSIS. Erich Leitner TU Graz, Institute of Analytical Chemistry and Food Chemistry, Graz, Austria

A novel approach to assess the quality and authenticity of Scotch Whisky based on gas chromatography coupled to high resolution mass spectrometry

An overview of beer flavour and sensory training

Identification of Adulteration or origins of whisky and alcohol with the Electronic Nose

Varietal Specific Barrel Profiles

Smoke Taint Update. Thomas Collins, PhD Washington State University

High resolution mass approaches for wine and oenological products analysis

Comprehensive analysis of coffee bean extracts by GC GC TOF MS

Analysis of Freshly Brewed Espresso Using a Retronasal Aroma Simulator and

An introduction to beer flavour

Synthetic Aroma Ingredients

CHAPTER 8. Sample Laboratory Experiments

5.3 Individual Aroma Compounds. The results are presented in the book for some individual foods.

5 Aroma Compounds. 5.1 Foreword

The Importance of Dose Rate and Contact Time in the Use of Oak Alternatives

Custom Barrel Profiling

Increasing Toast Character in French Oak Profiles

5 Aroma Compounds. 5.1 Foreword

Characterization of the Volatile Substances and Aroma Components from Traditional Soypaste

DEVELOPING A COMMON LANGUAGE TO DESCRIBE THE ATTRIBUTES OF BAKED GOODS

GAS-CHROMATOGRAPHIC ANALYSIS OF SOME VOLATILE CONGENERS IN DIFFERENT TYPES OF STRONG ALCOHOLIC FRUIT SPIRITS

Somchai Rice 1, Jacek A. Koziel 1, Anne Fennell 2 1

A CASE STUDY: HOW CONSUMER INSIGHTS DROVE THE SUCCESSFUL LAUNCH OF A NEW RED WINE

Somchai Rice 1, Jacek A. Koziel 1, Jennie Savits 2,3, Murlidhar Dharmadhikari 2,3 1 Agricultural and Biosystems Engineering, Iowa State University

Sensory Quality Measurements

Project Summary. Principal Investigator: C. R. Kerth Texas A&M University

TOOLS OF SENSORY ANALYSIS APPLIED TO APPLES

Natural Aroma Chemicals

A NEW APPROACH FOR ASSESSING

Semi quantitative and comparative analysis of 2 matrixes by SBSE-LD-GC-MS

Natural Aroma Chemicals

Natural Aroma Chemicals

Profiling of Aroma Components in Wine Using a Novel Hybrid GC/MS/MS System

Flavor and Aroma Biology

Flavor and Aroma Biology

Session 4: Managing seasonal production challenges. Relationships between harvest time and wine composition in Cabernet Sauvignon.

Flavor and Aroma Biology

Sensory Training Kits

HEALTH. for the NATION

by trained human panelist. Details for each signal are given in Table 2.

Investigating the factors influencing hop aroma in beer

The impact of smoke exposure on different grape varieties. Renata Ristic and Kerry Wilkinson

Overview of Distilled Spirits Flavor Production and Evaluation of Their Characteristics with Selected Aroma Bottle Samples

Flavor and Aroma Biology

Factors influencing mandarin fruit quality. What drives the eating. Outline. experience in mandarins?

Tyler Trent, SVOC Application Specialist; Teledyne Tekmar P a g e 1

Petite Mutations and their Impact of Beer Flavours. Maria Josey and Alex Speers ICBD, Heriot Watt University IBD Asia Pacific Meeting March 2016

Identifying Wine Sensory Attributes. Dr. Renee Threlfall Research Scientist University of Arkansas

Understanding the impact hopping rate has on the aroma quality and intensity of beer dry hopped with Cascade

Christian Butzke & Jill Blume enology.butzke.com

RESOLUTION OIV-OENO ANALYSIS OF VOLATILE COMPOUNDS IN WINES BY GAS CHROMATOGRAPHY

Chemical and Sensory Differences in American Oak Toasting Profiles

Emerging Applications

GC/MS BATCH NUMBER: W10104

Talanta 101 (2012) Contents lists available at SciVerse ScienceDirect. Talanta. journal homepage:

Application Note: Analysis of Melamine in Milk (updated: 04/17/09) Product: DPX-CX (1 ml or 5 ml) Page 1 of 5 INTRODUCTION

The Good and the Bad Influence of. Polyfunctional Thiols in Beer Hops. Grapefruit or a Cat Box? Application Scientist: Matthew Curtis

Flavour release and perception in reformulated foods

Analytical Report. Volatile Organic Compounds Profile by GC-MS in Clove E-liquid Flavor Concentrate. PO Box 2624 Woodinville, WA 98072

Use of a Master Lexicon for Evaluation of Spirit Categories

Extraction of Acrylamide from Coffee Using ISOLUTE. SLE+ Prior to LC-MS/MS Analysis

Flavor and Aroma Biology

Influence of climate and variety on the effectiveness of cold maceration. Richard Fennessy Research officer

Table 1: Experimental conditions for the instrument acquisition method

Analytical Report. Volatile Organic Compounds Profile by GC-MS in Cupcake Batter Flavor Concentrate

Study on the Role of Precursors in Coffee Flavor Formation Using In-Bean Experiments

Relating Descriptive Sensory Analysis to Gas Chromatography/Mass Spectrometry of Palm Sugars Using Partial Least Squares Regression

Giuseppe CORRADINI THE FLAVOR OF VINEGARS

Centre for Expertise in Smoke Taint Research. Dr Mark Downey, Director

Validation Report: Total Sulfite Assay Kit (cat. no. K-TSULPH)

Dr. Christian E. BUTZKE Associate Professor of Enology Department of Food Science. (765) FS Room 1261

Premature ageing of wine aromas. Pr Denis Dubourdieu, Dr Alexandre Pons and Dr Valérie Lavigne

Analytical Report. Table 1: Target compound levels. Concentration units are ppm or N/D, not detected.

Sensory and Flavor Training for Brewers

Volatiles: Impacts of Fruit Development, Ethylene, and Storage Environment. Jim Mattheis Tree Fruit Research Laboratory Wenatchee, WA, USA

Wine Aging and Monitoring Workshop On-Line References

SUPELCO. Analysis of Flavors and Off-Flavors in Foods and Beverages Using SPME. Robert E. Shirey and Leonard M. Sidisky

BARRELS, BARREL ADJUNCTS, AND ALTERNATIVES

Smoke Taint: Effect of wildfires on fruit and wine composition

Serving temperature Cup size and shape Black, with milk, sugar or other ingredients

Green Tea Flavor Description

Emerging Research in Aromas & Sweetness Enhancement

Het NIZO micro dinner:

Quantitative gas chromatography olfactometry and chemical quantitative study of the aroma of four Madeira wines

ANALYTICAL SERVICES Valid from the 01/02/2016 to the 31/01/17

You know what you like, but what about everyone else? A Case study on Incomplete Block Segmentation of white-bread consumers.

Institute of Food Research. Ian Colquhoun

A comparison between homebrew and commercial scale utilization Eric Bean and Frank Barickman

Volatile monophenols in belgian special beers : identification of specific markers

Journal of Chemical and Pharmaceutical Research, 2017, 9(9): Research Article

The organoleptic control of a wine appellation in France

Targeted and Non-Targeted Approaches for Complex Natural Sample Profiling by GC GC qms

Transcription:

ADVANCED ANALYTICAL SENSORY CORRELATION TOWARDS A BETTER MOLECULAR UNDERSTANDING OF COFFEE FLAVOUR 23/09/2011 J. KERLER, J. BAGGENSTOSS, M. MOSER, A. RYTZ, E. THOMAS, A. GLABASNIA, L. POISSON, B. FOLMER, I. BLANK

Can we predict in-cup sensory profiles by analytical data? 01 THE CHALLENGE SENSORY ANALYTICAL CORRELATION STATE OF THE ART 02 THE APPROACH MONADIC SENSORY PROFILING TARGETED GC/MS ANALYSIS ADVANCED STATISTICS 03 THE SOLUTION RELIABLE PREDICTIVE TOOL P2

01 THE CHALLENGE SENSORY ANALYTICAL CORRELATION

Aroma Value Concept: a comprehensive approach to evaluate coffee aroma P4

The coffee melodie fundamentally different nature of sensory & analytical data SENSORY PROFILING Listen to the orchestra Describe specific instruments/tonalities Evaluate their intensities AROMA ANALYTICS (targeted) Identification of the key players/instruments Evaluation of their concentrations & impact Reconstitute melodie P5

Outline & Objectives of study 12 coffee blends (25 ml, 40 ml, 110 ml) Instrumental analysis (42 odorants, 12 taste compounds) Targeted approach Predictive analyticalsensory correlation model Sensory analysis (12 panelists, 9 sensory descriptors) Profiling OBJECTIVES Develop mathematical model to predict coffee in-cup sensory profiles Identify well correlated marker compounds for sensory descriptors P6

02 THE APPROACH MONADIC SENSORY PROFILING TARGETED GC/MS ANALYSIS ADVANCED STATISTICS P7

Sensory profiling was carried out with an expert panel (n=12) THE BASIC ATTRIBUTES... roasty bitter acid... describe the basic properties of an Espresso coffee The subtle aroma descriptors... fruity-floral red fruits, lemon, jasmine green-vegetal herbs, fresh vegetables dry-vegetal wood, malt, cereal vegetal-humus earthy, mushroom cocoa roasted, cacao, dark chocolate sweet vanilla, caramel, honey... describe the signature aroma of an Espresso coffee... are grouped based on olfactive similarity P8

In-cup concentrations of 54 aroma and taste compounds were determined substance flavor quality substance flavor quality 1 methanethiol sulfur, garlic 28 2-acetylthiazole roasty, popcorn 2 dimethyl sulfide cabbage, sulfur 29 furfural grass, almond 3 dimethyl trisulfide sulfur, cabbage 30 furfuryl acetate - 4 furfurylthiol sulfur, roast 31 2,3,5-trimethylpyrazine roasty 5 3-mercapto-3-methylbutylformate catty 32 2-ethyl-3,6-dimethylpyrazine roasty, earthy 6 methional potato 33 2-ethyl-3,5-dimethylpyrazine roasty, earthy 7 3-methyl-2-butenethiol sulfur, amine 34 2-ethenyl-3,5-dimethylpyrazine roasty, earthy 8 2-methyl-3-furanthiol meat 35 2,3-diethyl-5-methylpyrazine roasty, earthy 9 acetaldehyde pungent, fruity 36 2-acetylpyrazine roasty 10 propanal solvent, pungent, fruity 37 2-isopropyl-3-methoxypyrazine pea, earthy 11 2-methylpropanal fruity, pungent 38 2-isobutyl-3-methoxypyrazine pea, earthy 12 2-methylbutanal fruity, cocoa 39 β-damascenone rose, honey 13 3-methylbutanal malty 40 sotolon maggi, curry 14 phenylacetaldehyde honey 41 furaneol caramel 15 hexanal grass 42 maltol caramel 16 2,3-butanedione buttery 43 3-CQA - 17 2,3-pentanedione buttery 44 5-CQA - 18 vanilline vanilla 45 4-CQA - 19 ethyl 2-methylbutanoate fruity 46 5-CQL bitter 20 ethyl 3-methylbutanoate fruity 47 4-CQL bitter 21 p-cresol medicinal, phenolic, smoke 48 5-FQA - 22 guaiacol smoke, medicine 49 4-FQA - 23 4-ethylguaiacol spice, clove 50 cyclo-val-pro bitter 24 4-vinylguaiacol spice, clove 51 cyclo-ala-pro bitter 25 N-methylpyrrole - 52 cyclo-pro-leu bitter 26 pyridine - 53 cyclo-phe-pro bitter 27 2-acetylpyridine popcorn 54 caffeine bitter P9

In-cup quantification was carried out using state-of-the-art methods ABSOLUTE QUANTITATIVE DATA 42 aroma compounds (isotope dilution assay) a. SPME-GC-MS b. SPME-GCxGC-TOF MS c. SPE-GC-MS 12 taste compounds (external standardisation) a. HPLC-DAD b. LC-MS/MS P10

Comprehensive GCxGC-TOF MS to quantify high impact trace odorants Analysis of methional Counts RT: 0.00-33.66 23000 22000 21000 20000 19000 18000 17000 16000 15000 14000 13000 12000 11000 10000 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 RT: 1.35 AA: 10422 RT: 5.60 AA: 20990 RT: 5.67 AA: 4261 RT: 8.61 AA: 4626 RT: 11.44 AA: 40188? RT: 13.08 AA: 41504 Methional peak hidden behind other peaks Resolved by deconvolution and 2-dimensional techniques 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Time (min) NL: 2.32E4 FID Analog ICIS 42GC6-101 P11

Preprocessing of analytical & sensory data key to perform multivariate statistics Sensory data Normalize Subtract (instrumental) pseudo-conc. Correlation of the two datasets X = Y + P Use of PCA & PCR Subtract pseudo-conc. Normalize Log 10 (conc.) Fechner s law: perception ~ k log (concentration) Instrumental Data (C. Lindinger et al., 2008) P12

Normalisation & transformation of analytical data Log 10 (conc.) Pseudo-concentration Pseudo-composition methanethiol dimethyl sulfide dimethyl trisulfide furfurylthiol 3-mercapto-3-methylbutylformate R1 2.67 1.92 0.42 2.24 1.32 3.73 3.36 3.50 3.48 3.39 E1 2.56 1.80-0.11 2.10 1.10 3.49 3.14 3.36 3.25 3.13 E5 2.64 1.63 0.11 2.08 1.35 3.62 3.18 3.41 3.30 3.21 L1 2.20 1.64-0.13 1.66 0.73 3.38 2.95 3.12 3.07 2.97 L2 2.25 1.41 0.13 1.85 0.97 3.31 3.05 3.28 3.11 2.99 R2 2.92 1.79 0.39 2.27 1.23 3.77 3.42 3.61 3.53 3.41 R3 2.88 1.63 0.30 2.24 1.33 3.66 3.35 3.70 3.43 3.31 E4 2.66 1.81 0.21 2.14 1.20 3.56 3.19 3.41 3.38 3.28 E2 2.90 2.40 0.11 2.13 1.56 3.68 3.27 3.46 3.40 3.34 E6 2.65 2.08 0.22 1.84 1.39 3.47 3.16 3.52 3.44 3.27 L3 2.17 1.56 0.08 1.85 1.14 3.28 2.95 3.19 3.08 3.01 E3 2.45 1.69 0.06 2.01 0.91 3.57 3.11 3.29 3.21 3.11 Mean 2.60 1.83 0.18 2.03 1.22 3.55 3.17 3.42 3.28 3.18 SD 0.25 0.28 0.17 0.18 0.23 0.15 0.14 0.16 0.16 0.15 acetaldehyde propanal 2-methylpropanal 2-methylbutanal 3-methylbutanal methanethiol dimethyl sulfide dimethyl trisulfide furfurylthiol 3-mercapto-3-methylbutylformate R1 0.31 0.29 1.40 1.18 0.43 1.20 1.32 0.54 1.23 1.35 E1-0.17-0.13-1.63 0.42-0.50-0.42-0.21-0.35-0.23-0.34 E5 0.18-0.72-0.41 0.28 0.57 0.45 0.06-0.05 0.08 0.20 L1-1.60-0.68-1.78-2.03-2.12-1.15-1.59-1.87-1.37-1.43 L2-1.39-1.54-0.26-0.98-1.05-1.62-0.86-0.84-1.12-1.25 R2 1.29-0.17 1.23 1.38 0.04 1.44 1.75 1.21 1.57 1.52 R3 1.15-0.72 0.71 1.19 0.46 0.70 1.26 1.79 0.93 0.85 E4 0.24-0.10 0.18 0.64-0.08 0.04 0.16-0.03 0.60 0.65 E2 1.21 2.02-0.40 0.59 1.44 0.88 0.69 0.24 0.69 1.01 E6 0.20 0.89 0.25-1.05 0.72-0.53-0.10 0.62 0.99 0.54 L3-1.74-0.99-0.56-0.97-0.35-1.82-1.53-1.44-1.28-1.16 E3-0.60-0.52-0.67-0.10-1.31 0.10-0.44-0.80-0.48-0.47 acetaldehyde propanal 2-methylpropanal 2-methylbutanal 3-methylbutanal Pseudo-conc. 0.95-0.25 0.22-1.53-0.76 1.14 0.91 0.21 0.24 0.13-1.09-0.18 methanethiol dimethyl sulfide dimethyl trisulfide furfurylthiol 3-mercapto-3-methylbutylformate R1-0.64-0.65 0.46 0.23-0.51 0.26 0.37-0.41 0.28 0.40 E1 0.08 0.13-1.38 0.67-0.25-0.17 0.04-0.10 0.02-0.09 E5-0.04-0.94-0.63 0.06 0.35 0.23-0.16-0.27-0.14-0.02 L1-0.07 0.85-0.25-0.50-0.59 0.38-0.06-0.34 0.16 0.10 L2-0.63-0.77 0.50-0.22-0.29-0.86-0.09-0.07-0.36-0.48 R2 0.15-1.31 0.09 0.24-1.10 0.30 0.61 0.07 0.43 0.38 R3 0.24-1.64-0.20 0.27-0.46-0.21 0.34 0.88 0.02-0.06 E4 0.03-0.31-0.04 0.43-0.29-0.17-0.06-0.24 0.39 0.43 E2 0.97 1.79-0.63 0.35 1.20 0.64 0.45 0.00 0.46 0.77 E6 0.07 0.76 0.12-1.17 0.59-0.66-0.22 0.49 0.86 0.42 L3-0.65 0.10 0.53 0.12 0.74-0.73-0.44-0.35-0.19-0.08 E3-0.42-0.34-0.49 0.08-1.13 0.28-0.26-0.62-0.30-0.29 acetaldehyde propanal 2-methylpropanal 2-methylbutanal 3-methylbutanal Standardize weight of each compound across coffees Y1 = (X1 mean) / SD Substract pseudo-concentration as per coffee Y2 = Y1 mean conc. P13

Approach used by Lindinger et al. (2008) achieved prediction of coffee headspace profiles by PTR-MS analysis M41 M45 M57 M61 M68 M69 M73 M75 M81 M82 M83 M87 M89 M97 M101 M111 Espresso n 1 145 3392 74 750 165 747 1374 786 1021 254 376 1081 58 311 285 240 Espresso n 2 127 3074 70 855 108 640 1237 647 781 171 299 936 49 328 284 229 Espresso n 3 129 3485 73 1080 82 671 1291 618 821 147 287 957 55 471 328 299 Espresso n 4 135 3502 72 961 91 733 1359 643 781 164 359 1006 51 415 323 269 Espresso n 5 162 3324 67 794 115 870 1434 689 994 186 364 1100 56 393 289 290 Espresso n 6 158 3822 70 947 80 855 1425 581 833 140 370 1061 51 509 314 307 Espresso n 7 125 3950 81 1268 81 600 1191 729 740 142 238 899 57 600 370 327 Espresso n 8 108 2618 63 766 122 561 1079 706 898 180 262 806 49 264 228 215 Espresso n 9 135 2828 80 864 164 707 1340 1128 1026 236 391 1030 65 302 280 229 Espresso n 10 96 2473 64 719 106 493 945 571 815 162 238 752 47 283 241 212 Espresso n 11 116 3150 69 834 110 564 1110 620 820 169 252 831 49 351 289 245 min 96 2473 63 719 80 493 945 571 740 140 238 752 47 264 228 212 M41 M45 M57 M61 M68 M69 M73 M75 M81 M82 M83 M87 M89 M97 M101 M111 Conc Espresso n 1 1.50 1.37 1.17 1.04 2.07 1.51 1.45 1.38 1.38 1.81 1.58 1.44 1.23 1.18 1.25 1.13 1.41 Espresso n 2 1.32 1.24 1.12 1.19 1.35 1.30 1.31 1.13 1.06 1.22 1.26 1.25 1.05 1.24 1.25 1.08 1.21 Espresso n 3 1.34 1.41 1.16 1.50 1.02 1.36 1.37 1.08 1.11 1.05 1.21 1.27 1.16 1.78 1.44 1.41 1.29 Espresso n 4 1.40 1.42 1.14 1.34 1.14 1.48 1.44 1.13 1.06 1.17 1.51 1.34 1.09 1.57 1.42 1.27 1.31 Espresso n 5 1.68 1.34 1.07 1.10 1.45 1.76 1.52 1.21 1.34 1.33 1.53 1.46 1.19 1.49 1.27 1.37 1.38 Espresso n 6 1.64 1.55 1.11 1.32 1.00 1.73 1.51 1.02 1.13 1.00 1.55 1.41 1.09 1.93 1.38 1.45 1.36 Espresso n 7 1.29 1.60 1.29 1.76 1.02 1.22 1.26 1.28 1.00 1.01 1.00 1.20 1.21 2.27 1.63 1.54 1.35 Espresso n 8 1.12 1.06 1.00 1.07 1.53 1.14 1.14 1.24 1.21 1.28 1.10 1.07 1.03 1.00 1.00 1.01 1.13 Espresso n 9 1.39 1.14 1.27 1.20 2.06 1.43 1.42 1.97 1.39 1.68 1.65 1.37 1.39 1.14 1.23 1.08 1.43 Espresso n 10 1.00 1.00 1.02 1.00 1.33 1.00 1.00 1.00 1.10 1.16 1.00 1.00 1.00 1.07 1.06 1.00 1.05 Espresso n 11 1.20 1.27 1.10 1.16 1.38 1.14 1.17 1.08 1.11 1.21 1.06 1.11 1.04 1.33 1.27 1.16 1.17 M41 M45 M57 M61 M68 M69 M73 M75 M81 M82 M83 M87 M89 M97 M101 M111 Espresso n 1 107 98 83 74 147 108 103 98 98 129 112 102 87 84 89 80 Espresso n 2 109 103 92 98 112 107 108 94 87 101 104 103 86 103 103 90 Espresso n 3 104 109 90 116 79 105 106 84 86 81 93 99 90 138 111 109 Espresso n 4 107 108 87 102 87 114 110 86 81 90 115 102 84 120 109 97 Espresso n 5 122 97 77 80 105 128 110 87 97 96 111 106 86 108 92 99 Espresso n 6 120 113 81 97 73 127 111 75 83 73 114 104 80 141 101 106 Espresso n 7 96 118 95 131 76 90 93 95 74 75 74 89 90 168 121 114 Espresso n 8 100 94 89 95 136 101 101 110 108 114 98 95 92 89 89 90 Espresso n 9 98 80 89 84 144 100 99 138 97 118 115 96 98 80 86 76 Espresso n 10 96 96 98 96 127 96 96 96 105 110 96 96 96 102 101 96 Espresso n 11 102 108 94 99 117 97 100 92 94 103 90 94 88 113 108 99 Espresso n 7 Standardize weight of each mass X 1 = X 0/min Pseudo-concentration Mean over all masses Pseudo-composition X 2 = X 1/Conc (x 100%) Flowery Winey Citrus Acid Comp2 (18%) Espresso n 3 Espresso n 4 Espresso n 6 Espresso n 11 Espresso n Coffee 1 Bitter Cocoa Espresso n 10 Espresso n 8 Espresso n 9 Espresso n 5 Roasted Woody Analytical data ButterToffee Cereal Espresso n 2 Sensory profile Comp1 (72%) Espresso n 7 Espresso n 9 Espresso n 11 Flow ery Winey Coffee Bitter Cocoa Flow ery Winey Coffee Bitter Cocoa Flow ery Winey Coffee Bitter Cocoa Citrus Roasted Citrus Roasted Citrus Roasted Acid Woody Cereal ButterToffee Acid Woody Cereal ButterToffee Acid Woody Cereal ButterToffee Sensory profile: by expert Predicted sensory profile P14

03 THE SOLUTION RELIABLE PREDICTIVE TOOL FOR IN-CUP SENSORY PROFILES P15

Coffees are widely distributed over sensory space Comp2-1.0-0.5 0.0 0.5 1.0 25mL (Ristretto) 40mL (Espresso) 110mL (Lungo) fruity-floral acid E1 green-vegetal CTn E6 E2 E3 L1 E4 E5 R2 R1 R3 L3 L2 vegetal-humus sweet roasty dry-vegetal cocoa bitter PCA from Sensory data (substracted intensity effect ) -1.0-0.5 0.0 0.5 1.0 P16

Combination of sensory & analytical spaces using PCA Comp2-1.0-0.5 0.0 0.5 1.0 25mL (Ristretto) 40mL (Espresso) 110mL (Lungo) fruity-flowery 2,3-pentanedione acid E6 hexanal E2 acetaldehyde 2,3,5-trimethylpyrazine furfurylthiol E4 E5 dimethyl trisulfide 2,3-diethyl-5-methylpyrazine guaiacol R3 2-acetylpyridine furfuryl acetate phenylacetaldehyde 2,3-butanedione methanethiol propanal E1 cyclo-val-pro cyclo-pro-leu caffeine dimethyl sulfide 3-methylbutanal 3-methyl-2-butene-1-thiol N-methylpyrrole E3 R2 cyclo-ala-pro 2-ethyl-3,6-dimethylpyrazine sotolon 2-acetylpyrazine cyclo-phe-pro ethyl 3-methylbutanoate 2-isopropyl-3-methoxypyrazine cocoa furaneol 3-mercapto-3-methylbutylformate?-damascenone R1 methional CTn maltol 2-methyl-3-furanthiol L1 L2 bitter furfural ethyl 2-methylbutanoate L3 2-methylbutanal 2-ethenyl-3,5-dimethylpyrazine 2-ethyl-3,5-dimethylpyrazine 4-vinylguaiacol 4-ethylguaiacol green-vegetal vanilline 2-acetylthiazole 2-isobutyl-3-methoxypyrazine 2-methylpropanal 5-CQA 4-CQL 5-FQA 4-FQA 4-CQA 3-CQA 5-CQL p-cresol vegetal-humus sweet roasty dry-vegetal Correlated arrows are close to each other The longer an arrow, the better its representation in sensory space -1.0-0.5 0.0 0.5 1.0 Comp1 P17

30 compounds exhibit strong correlation to the sensory descriptors 2,3,5-trimethylpyrazine 2-furfurylthiol acetaldehyde methanethiol 2,3-butanedione 2,3-pentanedione dimethyl sulfide sotolon furaneol 2-acetylpyridine pyridine sweet furfuryl acetate phenylacetaldehyde roasty dry vegetal 3-methyl-2-butene-thiol N-methylpyrrole methional furfural 2-methylbutanal acid green vegetal cocoa bitter vegetalhumus fruityflowery 2-isopropyl-3-methoxypyrazine 2-methyl-3-furanthiol vanilline 2-acetylthiazole hexanal 2-isobutyl-3-methoxypyrazine 2-methylpropanal p-cresol 4-ethylguaiacol guaiacol 4-vinylguaiacol dimethyl trisulfide 2,3-diethyl-5-methylpyrazine P18

The robust statistical model allows a reliable prediction of the sensory profile, i.e. 101 out of 106 data are below LSD R1 R2 R3 E1 E2 E3 E4 E5 E6 L1 L2 L3 P19

CONCLUSIONS A mathematical model has been developed which allows predicting the sensory in-cup profiles of Nespresso blends Deeper understanding of link between sensory descriptors and aroma markers Useful tool to support development of Nespresso blends with new taste experiences P20

Thank you for your attention! ANY QUESTIONS?