Bread. Guided Inquiry Activity #27

Similar documents
FOOD SCIENCE GLUTEN FORMATION

Coagulation of protein: fill in the missing words

Anaerobic Cell Respiration by Yeast

Technology of Baking

Alcoholic Fermentation in Yeast A Bioengineering Design Challenge 1

Correct Flour Is Magical!

Section 3 Dough Management

HEALTH & FOOD TECHNOLOGY HIGHER FOOD PRODUCT DEVELOPMENT THE FUNCTIONAL PROPERTIES OF INGREDIENTS. Functional Properties of Ingredients

An Investigation into the relative gluten content of wheat flours

Cooking with Alcohol

Functions of Raising Agents

Module 2: Role of ingredients in baked products manufacture- i) wheat flour, flour improvers and water.

Factors Affecting the Rising of Bread Dough - Ingredients

Introductions. Kitchen Science Investigators. Kitchen Science Investigators. Who are you? Agenda. Our Philosophy

BINDING. Functional properties of food

COURSE FOD 3040: YEAST PRODUCTS

Plagiarism Bad! Citations Good!

The Story of Yeast. What Is Yeast?

Cell Biology: Is Yeast Alive?

water measuring cup zipper-lock plastic sandwich bags paper towel tablespoon baking soda vinegar

Functional Medicine Is the application of alternative holistic measures to show people how to reverse thyroid conditions, endocrine issues, hormone

AFTER READING THIS CHAPTER, YOU SHOULD BE ABLE TO: shortening, sugar, eggs, water or milk, and leavenings you

Browning reactions. Guided Inquiry Activity #17

Solubility Lab Packet

Ulrick&Short. Technical Briefing Functionality of Sugar in Cakes. starches flours fibres proteins. Technically the Best

PIZZA. 36. Copyright 2010 The Mobile Home Gourmet, MobileHomeGourmet.com, all rights reserved.

Investigating Fungi II Yeast

Differences Between Wheat, Rye and My Starters

Factors affecting finished products

CAKES MAKING. Appearance: top crust slightly rounded pale golden brown.

Breads. Answer the following questions by using your Food for Today book. (Ch. 42 & 43)


Objective 5: Review the nutrients found in breads and incorporate guidelines from MyPlate.

Enzymes in Wheat FlourTortilla

Sample Questions for the Chemistry of Coffee Topic Test

Make & Taste DAIRY. Lesson Activity. Butter (Grades 3-5) LESSON OVERVIEW: LESSON OBJECTIVES: LESSON MATERIALS NEEDED: ACADEMIC INTEGRATION

The Chemistry of Baking

Molecular Gastronomy: The Chemistry of Cooking

GCSE Food Preparation and Nutrition November Mock Examination Preparation

Method 3 (carbon dioxide)

Chemistry Introduction to Chemistry. Sarah Morgan Black

Foods 2: Unit Notebook. Page!1

Chapter 4. Basic Principles of Cooking and Food Science. Copyright 2011 by John Wiley & Sons, Inc. All Rights Reserved

Knowledge booklet- Chicken products

Sticking and mold control. TIA Tech 2017 Los Angeles, California Steve Bright

Do heating and cooling have an effect on matter?

Gluten-Free Diet: General Information

Yeast Breads are Easy to Make

THE FERMENT WARS Keeping Your Gut Healthy!

Scientific Cooking and The Physics of Complex Systems Davide Cassi Department of Physics Scientific Gastronomy Lab. Università di Parma

BAKING SCIENCE AND TECHNOLOGY

The Use and Misuse of Fruit Juice in Pediatrics

The Effect of Varying Amounts of Oat Flour on Texture and Flavor of Muffins

VWT 272 Class 11. Quiz 10. Number of quizzes taken 20 Min 25 Max 30 Mean 29.8 Median 30 Mode 30

BEHAVIOR OF HOT AND COLD

1. What are the three categories of yeast breads? a. Rolls b. Loafs c. Doughnuts

Healthy Gluten Free Diet Top 10 Gluten-free Meal and Dessert Recipes

Separating Mechanical Mixtures

Breathless Balloon. Tools:

A. GENERAL INFORMATION No. 2 (1) DEFINITION OF TERMS USED IN FOOD PREPARATION

Perform various methods of scaling, baking and testing cakes. Understanding of the difference between Creaming, One Stage, 2 Stage, and Foam Base

The best baba is the one my colleagues from Napoli and Salerno make

There are many organic flours on the market, but they are not all the

Objective: To observe fermentation and discuss the process. Problem: Will yeast give off significant amounts of gas to inflate a balloon?

From Field to Table Cookbook

Learning Outcomes. P2 P7 SCN 2-13a HWB 1-15a, 2-15a HWB 1-16a, 2-16a HWB 1-17a, 2-17a Unit of Study Unit 6 Micro-organisms

What makes bread? Stanley Cauvain

Lab 2. Drug Abuse. Solubility and Colligative Properties of Solutions: Coffee, Soda, and Ice Cream

Diffusion & Osmosis Labs

GLUTEN FREE WHY AND HOW TO GO GLUTEN FREE

The magic of Seeds: Making America Healthy Again!

Explore Today s World of PIZZA POSSIBILITIES

Living Factories. Biotechnology SG Biology

The production of bread can be divided

Dr.Nibras Nazar. Microbial Biomass Production: Bakers yeast

Lab 2. Drug Abuse. Solubility and Colligative Properties of Solutions: Coffee, Soda, and Ice Cream

Whole Wheat Sourdough Bread With Linseed

Materials List: Varies depending on experiment. See list below for the required materials for each activity.

Understanding Ingredients

Seriously, CELIAC. talk.

Why are grains an important part of healthful eating?

7: Bread making technology straight dough and sponge dough method

Egg-Free Medifast Products The following Medifast products do not contain egg as a known ingredient.

VWT 272 Class 7. Quiz 5. Number of quizzes taken 19 Min 2 Max 30 Mean 19.5 Median 23 Mode 24

Living with Lactose Intolerance

Separating the Components of a Mixture

Grain Craft. Thresher Seed Days Fort Hall, ID

Pasta - Past & Present 3:54

MODEL 504 PLAN A 504 PLAN MUST BE ADAPTED TO THE INDIVIDUAL NEEDS, ABILITIES, AND MEDICAL CONDITION OF EACH INDIVIDUAL CHILD.

TO BAKING WITH PZ-44 & REDDI-SPONGE

Chapter 4 Dough-making

Name. Microorganisms C 3 Workbook

Make & Taste Dairy. Whipped Cream (Grades 3-5) Lesson Plan LESSON OVERVIEW: LESSON OBJECTIVES:

Food Allergies 101 LEXI COURNOYER RDN, LDN CAMPUS DIETITIAN AT MINNESOTA STATE UNIVERSITY MANKATO

Baking and Eating Sourdough Bread

Grapes of Class. Investigative Question: What changes take place in plant material (fruit, leaf, seed) when the water inside changes state?

Lactose-Free Low-Lactose Diet

New Gluten World S.r.l. Carmen Lamacchia

Chapter 6 Dough and Crust Troubleshooting

ESP: Caution... Contents May Be Hot!!! The conduction of heat through metal objects will be explored.

Transcription:

Bread Model 1: Wheat flour is ~70-80% starch and 7-15% protein. Surprisingly, it is that relatively small percentage of protein that makes it possible for wheat flour to turn into bread. Differences in wheat type, growing climate and soil conditions impact the amount of protein present within the wheat grains. Spring- sown wheat varieties tend to have higher protein content and are often described as hard flours. A soft flour is usually obtained from winter wheat, which produces flours with a protein content of less than 10%. Table 27.1. Protein content for types of wheat flour 1 Type of flour Grams of protein per cup Percent protein Semolina (Durum wheat) 21g 13% Wheat flours, bread, unenriched 16g 12% Wheat flour, white, all- purpose 13g 10% Wheat flour, white, cake, enriched 11g 8% Over 75% of the protein in wheat flour is comprised of two types of proteins: glutenin and gliadin. When mixed with water and mechanically worked or mixed, these two proteins form a dense elastic matrix known as gluten (Fig 27.1). Wheat flour protein is essential for forming the elastic protein matrix that traps air bubbles and allows dough to rise without the protein, there would be NO bread (see Model 3 for a lesson on rising )! Gluten also provides the structure and chewiness to risen breads. So, what is gluten? Gluten is a matrix of glutenin and gliadin proteins formed from the addition of water to wheat flour. Gliadins are smaller, tightly coiled proteins that fold in a compact, spherical three- dimensional structure. Glutenin proteins form looser spirals that are stabilized by hydrogen bonds between the amino acids of the protein (Fig 27.2). When you have dry flour or a just- combined flour/water mixture, the gliadin and glutenin proteins are in isolated, disorganized clumps. However, once a flour and water mixture is worked - through stirring, mixing or kneading - the gliadin and glutenin proteins begin to interact with one another via non- covalent hydrogen bonding and 1 Nutrition data is from the United States Department of Agriculture, Agricultural Research Service, National Nutrient Database for Standard Reference Release 27. http://ndb.nal.usda.gov/ Copyright 2016 Wiley, Inc. Page 1

some covalent bonds (discussed below). The compact gliadins integrate between the spirals as the mixture is kneaded the mechanical stretching helping to organize the glutenin spirals into longer chains. Figure 27.1. A cartoon of gliadin and glutenin proteins in wheat forming gluten. Copyright 2016 Wiley, Inc. Page 2

Figure 27.2. A spiral structure of amino acids held together by hydrogen bonds. Questions: 1. Why does the flour used to make cakes have less protein (i.e. less glutenin and gliadin) that flours used to make breads? (see Table 27.1) 2. In the kneading of dough, the hydrogen bonds holding the gluten matrix together can break as the dough and therefore the proteins are stretched. But after stretching (and bond breaking), the dough will spring back or shorten. What do you think is causing this spring back? (imagine stretching a telephone cord or slinky) 3. In order to form gluten, the glutenin and gliadin proteins must absorb water. a) A roux is the base of a flour thickened sauce or gravy. In a roux, dry flour is first cooked in fat how would this affect the formation of gluten? b) Cutting or blending flour with fat is the first step in making dough for light and tender pastries. Why is this step advantageous when making a light and tender baked good that easily crumbles in your mouth? Copyright 2016 Wiley, Inc. Page 3

Model 2. Oxidation of protein chains can result in a new covalent bond between two cysteine residues within a single protein or between two proteins. Disulfide bonds can form between glutenin protein molecules. Together hydrogen bonds and disulfide bonds make long chain of glutenin molecules linked end to end. This network of linked and coiled protein is the matrix we call gluten. Figure 27.3. Disulfide bonds between peptides (a) link glutenin chains as shown in the cartoon in part (b) Copyright 2016 Wiley, Inc. Page 4

4. When a disulfide bond forms, the new covalent bond is between what two atoms? Does that explain why this bond is called a disulfide bond? Please elaborate. 5. Using your knowledge of covalent bonds (vs. non- covalent bonds), please explain why forming disulfide bonds between glutenin proteins helps to make a strong gluten matrix. 6. Flour that is aged - literally, the flour is older - makes better bread. Considering that aged flour has sat out and been exposed to the air (and oxygen in the air ) for longer. How might that explain the stronger gluten matrix which forms when using aged flour. Copyright 2016 Wiley, Inc. Page 5

Model 3. A typical bread recipe Ingredients 1 ¼ cups water (70 to 80 F) 2 teaspoons sugar 1 teaspoon salt 3 ½ cups bread flour 1 ½ teaspoons active dry yeast 1 tablespoon cornmeal What are yeast? And why are they in this recipe? Figure 27.4. The overall breakdown of starch into sugar, then ethanol and CO 2 by yeast. Risen dough is like a gluten balloon filled with molecules of gas. The balloon is filled carbon dioxide generated by the yeast, as well as air that was introduced into the dough during mixing and kneading. The dough inflates while on the kitchen counter, but it inflates even more when it gets in the oven! Why is this? Scientific law tells us that gases Copyright 2016 Wiley, Inc. Page 6

expand when heated; this is known as the ideal gas law. When the dough is placed in the oven, the gas pockets expand, and the dough rises. In addition to the expansion of the CO 2 and air gas molecules, at about 140 F/60 C, more gas is generated in the rising bread due to vaporization of the yeast- created ethanol and water into more gas; this expands the dough by as much as half of the initial dough volume. Table 27.2. Melting and boiling points for glucose, ethanol and carbon dioxide Temperature at which the substance melts (from a solid to a liquid) Temperature at which the substance boils (goes from a liquid to a gas) C 6 H 12 O 6 (the sugar glucose) 332 F/155 C - - - - - - - - - - - - - - - - - - - - C 2 H 5 OH (ethanol) - 173 F/- 114 C 172 F/78 C CO 2 (carbon dioxide) - 109 F/- 78.5 C - 70 F/ - 57 C Yeast prefer warm temperatures to grow (95 F/35 C). Yeast start dying at ~120 F/49 C and are dead by 140 F/60 C. 7. Yeast is mixed into bread dough to convert sugars to ethanol and carbon dioxide. Bread bakes at ~350 F (~175 C). Now consider Table 27.1 and the questions below: At the temperature of baking bread, what happens to the yeast? At the temperature of baking bread, what happened to the ethanol? To the carbon dioxide? How might the answer to the previous questions explain the rising of dough? What is making the dough rise? Use the phrase physical state in your answer. 8. In bread baking, oven spring is the final burst of rising just after a loaf is put in the oven and before the crust hardens. When the dough hits the hot oven, it can puff up to as much as a third of its size in a matter of a few minutes. What is causing this? Copyright 2016 Wiley, Inc. Page 7

9. In bread baking, recipes often call for the baker to proof the yeast before using. Proving the yeast are healthy requires suspending them in some warm (not hot or cold!) water and feeding them a little sugar. After a few minutes, a head of foam will form. Why must you use warm water? (versus hot or cold?) What is creating the head of foam? (Remember, a foam is tiny bubbles of gas trapped in a liquid film) Putting it all together 7. In the gluten matrix, hydrogen bonds are holding the protein spirals together and disulfide bonds are linking them end to end (like a telephone cord), but also hydrogen bonds can hold neighboring linked spirals together. Draw on the cartoon below to indicate these interconnecting hydrogen bonds. Copyright 2016 Wiley, Inc. Page 8

8. Dough that is left to rise in the refrigerator will take much longer (8-12 hours), compared to dough that is left to rise in a warm kitchen. Why is this? 9. An allergy to the protein gluten is the cause of the symptoms of Celiac Disease. According to Celiac.org, Celiac symptoms include abdominal cramping, intestinal gas, distention and bloating of the stomach, chronic diarrhea or constipation (or both), anemia, unexplained weight loss with large appetite or weight gain 2. Recent improvements in diagnosis of Celiac disease have led to an increased awareness of the disease, and a response from food manufacturers. Celiacs can now find a variety of gluten- free products in the regular grocery store. In order to be gluten- free what must be true about the product? Use the words protein, primary sequence, glutenin and gliadin in your answer. 2 www.celiac.org Copyright 2016 Wiley, Inc. Page 9