THE ANNUAL PRODUCTION AND UTILIZATION OF DRY MATTER OF AN AVOCADO (Persea americana Mill.) TREE SUMMARY

Similar documents
NITROGEN ALLOCATION WITHIN THE 'HASS' AVOCADO

Avocado sugars key to postharvest shelf life?

NEW ZEALAND AVOCADO FRUIT QUALITY: THE IMPACT OF STORAGE TEMPERATURE AND MATURITY

7. LOCALIZATION OF FRUIT ON THE TREE, BRANCH GIRDLING AND FRUIT THINNING

Percentage Fruit Set In Avocados (Persea Americana Mill.)

THE EFFECT OF GIRDLING ON FRUIT QUALITY, PHENOLOGY AND MINERAL ANALYSIS OF THE AVOCADO TREE

QUARTELY MAIZE MARKET ANALYSIS & OUTLOOK BULLETIN 1 OF 2015

Effect of Time of Harvest on Fruit Size, Yield and Trunk Starch Concentrations of 'Fuerte' Avocados

THE EFFECT OF ETHYLENE UPON RIPENING AND RESPIRATORY RATE OF AVOCADO FRUIT

What Went Wrong with Export Avocado Physiology during the 1996 Season?

Vegetative growth and fruit retention in avocado as affected by a new plant growth regulator (Paclobutrazol)

Non-Structural Carbohydrates in Forage Cultivars Troy Downing Oregon State University

18 PHOTOSYNTHESIS AND CARBOHYDRATE PARTITIONING IN CRANBERRY

ALBINISM AND ABNORMAL DEVELOPMENT OF AVOCADO SEEDLINGS 1

Temperature Regimes for Avocados Grown In Kwazulu-Natal

VEGETATIVE FLUSHING AND FLOWERING OF MACADAMIA INTEGRIFOLIA IN HAWAII

THE GROWTH OF THE CHERRY OF ROBUSTA COFFEE

(36) PROHEXADIONE-CALCIUM AFFECTS SHOOT GROWTH AND YIELD OF LEMON, ORANGE AND AVOCADO DIFFERENTLY

QUARTERLY REVIEW OF THE PERFORMANCE OF THE DAIRY INDUSTRY 1

EFFECTS OF HIGH TEMPERATURE AND CONTROLLED FRUITING ON COTTON YIELD

SELF-POLLINATED HASS SEEDLINGS

(A report prepared for Milk SA)

21/06/2009. Metric Tons (000) '95 '96 '97 '98 '99 '00 '01 '02 '03 '

Use of Plant Growth Regulators to Increase Fruit Set, Fruit Size and Yield and to Manipulate Vegetative and Floral Shoot Growth

COMPARISON OF CORE AND PEEL SAMPLING METHODS FOR DRY MATTER MEASUREMENT IN HASS AVOCADO FRUIT

Fruit Set, Growth and Development

RELATIONSHIP BETWEEN TEMPERATURE IN OCTOBER AND NOVEMBER AND YIELD

AWRI Refrigeration Demand Calculator

Determining the Optimum Time to Pick Gwen

POTATOES USA / SNAC-INTERNATIONAL OUT-OF-STORAGE CHIP QUALITY MICHIGAN REGIONAL REPORT

FLOWERING BEHAVIORS OF TAIWAN AVOCADO CULTIVARS

Quality of western Canadian flaxseed 2012

Effects of Preharvest Sprays of Maleic Hydrazide on Sugar Beets

Regression Models for Saffron Yields in Iran

STEP1 Check the ingredients used for cooking, their weight, and cooking method. Table19 Ingredient name and weight of company A s Chop Suey

Macro nutrient accumulation and requirement of Hass avocado trees

SELECTION STUDIES ON FIG IN THE MEDITERRANEAN REGION OF TURKEY

Uptake and Utilization of Nitrogen Applied to Tea Plants

Module 6. Yield and Fruit Size. Presenter: Stephan Verreynne

PERFORMANCE OF FOUR FORAGE TURNIP VARIETIES AT MADRAS, OREGON, J. Loren Nelson '

Using Growing Degree Hours Accumulated Thirty Days after Bloom to Help Growers Predict Difficult Fruit Sizing Years

FRUIT GROWTH IN THE ORIENTAL PERSIMMON

EFFECT OF HARVEST TIMING ON YIELD AND QUALITY OF SMALL GRAIN FORAGE. Carol Collar, Steve Wright, Peter Robinson and Dan Putnam 1 ABSTRACT

THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S.

Flowering and Fruiting Morphology of Hardy Kiwifruit, Actinidia arguta

PATTERNS OF FRUIT GROWTH AND FRUIT DROP OF 'HASS' AVOCADO TREES IN THE WESTERN BAY OF PLENTY, NEW ZEALAND

Towards a numerical phenotyping for: Phenology Berry enological traits

Distribution of Inorganic Constituents in Avocado Fruits

The aim of the thesis is to determine the economic efficiency of production factors utilization in S.C. AGROINDUSTRIALA BUCIUM S.A.

California Avocado Society 1997 Yearbook 81:

Physiological gradients in fleshy pericarp of avocado

Corn Growth and Development

Carbon dioxide exchange of developing avocado (Persea

OVERSEEDING EASTERN GAMAGRASS WITH COOL-SEASON GRASSES OR GRASS- LEGUME MIXTURES. Abstract

Dairy Market. Overview. Commercial Use of Dairy Products

HARVESTING MAXIMUM VALUE FROM SMALL GRAIN CEREAL FORAGES. George Fohner 1 ABSTRACT

TEMPERATURE CONDITIONS AND TOLERANCE OF AVOCADO FRUIT TISSUE

ANALYSIS OF THE EVOLUTION AND DISTRIBUTION OF MAIZE CULTIVATED AREA AND PRODUCTION IN ROMANIA

EVALUATION OF NEW HASS -LIKE AVOCADO CULTIVARS IN SOUTH AFRICA

WALNUT HEDGEROW PRUNING AND TRAINING TRIAL 2010

Effect of Pruning Severity and Branch Quality on Fruit Set and Fruit Dry Weight of Packham s Triumph Pears (Pyrus communis L.)

UNIVERSITY OF CALIFORNIA AVOCADO CULTIVARS LAMB HASS AND GEM MATURITY AND FRUIT QUALITY RESULTS FROM NEW ZEALAND EVALUATION TRIALS

Comparing canola and lupin varieties by time of sowing in the Northern Agricultural Region

Dairy Market R E P O R T

Time of Avocado Pruning Affects Fruit Set and Avocado Thrips Occurrence in Southern California Groves

ECONOMICS OF COCONUT PRODUCTS AN ANALYTICAL STUDY. Coconut is an important tree crop with diverse end-uses, grown in many states of India.

PERFORMANCE OF HYBRID AND SYNTHETIC VARIETIES OF SUNFLOWER GROWN UNDER DIFFERENT LEVELS OF INPUT

Coffee prices rose slightly in January 2019

Citrus: World Markets and Trade

GIRDLING, A MEANS TO INCREASE AVOCADO FRUIT PRODUCTION

Quality of western Canadian peas 2017

THE IMPACT OF FOLIAR APPLICATIONS OF NITROGEN AND BORON ON 'HASS' AVOCADO FRUIT SET IN 2004.

INFLUENCE OF SEED VIGOUR ON CROP GROWTH AND YIELD OF BSH-1 HYBRID SUNFLOWER UNDER NORMAL AND COMPENSATED SEED RATES

ANALYSIS OF CLIMATIC FACTORS IN CONNECTION WITH STRAWBERRY GENERATIVE BUD DEVELOPMENT

Crop Load Management of Young Vines

Record exports in coffee year 2017/18

Berry = Sugar Sink. Source: Sink Relationships in the Grapevine. Source: Sink Relations. Leaf = Photosynthesis = Source

The Pomology Post. Hull Rot Management on Almonds. by Brent Holtz, Ph.D., University of California Pomology Advisor

Coffee market continues downward trend

FRUIT SIZE, YIELD AND STARCH CYCLING IN RELATION TO DELAYED HARVEST OF EARLY AND LATE MATURING AVOCADO CULTIVARS

Volatility returns to the coffee market as prices stay low

Cocoa Prepared by Foresight October 3, 2018

Peanut Meal as a Protein. Fattening Hogs in the Dry Lot. Supplement to Corn for AGRICULTURAL EXPERIMENT STATION ALABAMA POLYTECHNIC INSTITUTE

Do lower yields on the vine always make for better wine?

ECONOMIC IMPORTANCE OF LOUISIANA SUGARCANE PRODUCTION IN 2017

IMPACT OF OVERSEEDING COOL-SEASON ANNUAL FORAGES ON SPRING REGROWTH OF TIFTON 85 BERMUDAGRASS 1. Abstract

Effect of Fruit Removal on Net Gas Exchange of Avocado Leaves

SUNCROPS TM SUN PROTECTION KAOLÍN, NO CARBONATE

Quality of western Canadian flaxseed 2013

Quality of western Canadian peas 2009

CORRELATIONS BETWEEN CUTICLE WAX AND OIL IN AVOCADOS

Pecan Pollination. Dr. Patrick Conner University of Georgia, Horticulture Department

Quality of western Canadian flaxseed 2014

WEEKLY MAIZE REPORT 11 JULY 2018

THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S.

Treating vines after hail: Trial results. Bob Emmett, Research Plant Pathologist

2010 Winter Canola Variety Trial

Progress Report on Avocado Breeding

Sorghum Yield Loss Due to Hail Damage, G A

Brent Loy, Plant Biology, University of New Hampshire, Durham, NH

Transcription:

1999. Revista Chapingo Serie Horticultura 5:89-94. THE ANNUAL PRODUCTION AND UTILIZATION OF DRY MATTER OF AN AVOCADO (Persea americana Mill.) TREE G. Adar Gaaton, 25130 Israel. Fax. 972-4-9858413. E-mail: gadar@research.haifa.ac.il SUMMARY This work, which was a part of the M.Sc. studies in the Faculty of Agriculture in the Hebrew University of Jerusalem, was carried out under the supervision of Prof. E.E. Goldschmidt. Two basic processes which take place concurrently in the avocado tree during the yearly cycle of growth and reproduction are discussed in this essay: Dry matter production and its utilization. Key Words: Tree physiology, reserves, productivity. INTRODUCTION The production of dry matter and its distribution among plant organs are basic processes on which other internal activities are dependent. Therefore it is important to study the carbon balance of the avocado tree. The objective of this essay is to compile a dry matter budget for a fruiting avocado tree and to find its relations to the yearly avocado growth cycle. Eventually, this dry matter budget may be part of a dynamic avocado productivity model, as developed for citrus by Harpaz et al. (1990) and for other crops. The data presented in the essay are based on photosynthetic measurements made in Israel under Israeli climatic conditions, but important data from worldwide sources are included. The data, calculations and estimations presented in this paper, refer to an avocado tree which reaches a canopy surface area of 50 m 2 by the end of September. Such a tree has been defined a standard tree. The main data which are presented in following sections are based on photosynthetic measurements made by Sharon & Bravdo (unpublished) on the south quadrant of a Hass avocado tree, on the dry matter content of Hass avocado tree tissues presented by Lovatt (1996), on the avocado fruit growth presented by Ofer (1986) and on the yearly growth of the perennial parts of an avocado tree which grows in a commercial orchard. 1

The basic figures Four rounds of photosynthetic measurements, with an interval of two hours, conducted on September 21, 1977 (12 hours of daylight) on the external layer of the south quadrant of a Hass avocado tree, revealed that the daily assimilation of a quadrate meter was 0.21 mol CO 2. This figure refers to the hours of direct sunlight as well as to indirect lighting during the day. According to this figure, estimates of the assimilation of the east, west and north quadrants have been made. So, it follows that the daily assimilation rate of an avocado tree, with an external canopy surface of 50 m 2 is 5.18 of CO 2. According to data on reduced light intensity which reaches leaves on the inner, shaded parts of the tree (Schaffer and Andersen, 1994), it was estimated that for the whole tree, those leaves assimilate 1.9 mol of CO 2 per day. So, the total daily assimilation of an avocado tree is 7.08 mol of CO 2, which are 311.5 gram of CO 2. Factors which influences the assimilation rate The impact of each of the following five factors on the monthly assimilation rate of an avocado tree was calculated: leaf age, day length, yearly canopy growth, eastern dry wind stress, and climatic conditions during winter. Leaf age 1.1) The life span of an avocado leaf is approximately one year. 1.2) The flush of avocado leaves and their shedding occurs in an uneven rate all year long (mostly between April and July). 1.3) The maximum assimilation efficiency of avocado leaves is attained between the 25 th and 70 th day after sprouting. Afterwards, their assimilation efficiency declines gradually towards senescence. These are the physiological facts according to which the term assimilation potential has been defined. Assimilation potential is the monthly assimilation yield, in mol CO 2, of an avocado leaf, calculated according to the order of the leaf flush and age. This factor refers to the internal capability of the leaf to assimilate CO 2. Day length, eastern dry wind stress and climatic conditions during winter, are external factors that have an impact o the leaf s assimilation rate. The adjustments of the monthly assimilation potential As mentioned earlier, our estimate of the assimilation of an avocado tree, 7 mol of CO 2 per day, or 210 mol of CO 2 per month, was calculated according to photosynthetic measurements made on September 21, when the hours of daylight equal those of darkness. 2

During spring, the number of light hours that extend by 5.5% per month while during autumn they are reduced at the same rate. Therefore, the monthly assimilation potential has been adjusted accordingly: the first adjustment. It was estimated that the seasonal growth of the canopy s outer layer area of an avocado tree in a commercial orchard reaches during summer, about 14%. Most of this yearly growth is vertical. The second adjustment of monthly assimilation has been done according to this estimation. The reduction of the monthly assimilation rate, caused by climatic conditions, such as spring east dry winds and the winter climate, was the third adjustment. The third adjustment has been done according to data provided by The Israeli Meteorological Service. The figures of the calculated monthly assimilation of an avocado tree, after the three adjustments mentioned earlier, are presented in Table 1, line 2. According to the figures, the highest monthly assimilation of 216 mol of CO 2 is gained in August by the standard avocado Hass tree, while the lowest monthly assimilation occur in February. According to the figures, the calculated monthly assimilation of an avocado tree in January and in February are only about 29% of the potential monthly assimilation, while in August it is about 97% (Table 1, line 2/1). The monthly gap between the calculated (actual) assimilation of an avocado tree and its assimilation potential, demonstrates mostly the influence of climatic conditions and canopy growth, on the avocado s assimilation performance. Table 1. The calculated monthly assimilation rate and the assimilation potential of a standard avocado tree (mol of CO 2 per month). Month: A M J J Au S O N D J F Ma 1 86 100 133 172 222 210 196 168 159 146 123 112 2 55 82 118 162 216 210 156 120 73 43 36 51 2/1 0.63 0.82 0.89 0.94 0.97 1.00 0.80 0.71 0.46 0.29 0.29 0.46 Month: from April to March. 1: The monthly assimilation potential of an avocado tree in mol CO 2. 2: The calculated monthly assimilation in mol of CO 2 2/1: The ratio of calculated monthly assimilation to the assimilation potential of a standard avocado tree. The yearly growth of an avocado tree In order to evaluate the yearly dry matter production, the following information was taken into account: Data presented by Cameron (1952) and Lovatt (1996) about avocado trees that were dismembered into organs. Their fresh and dry weights were reported; and growth rates of avocado shoots and roots measured in a rhizotron by Ploetz et al. (1992). The following assumptions were made for the compilation of Table 2: A crop of 53.6 kg, F.W. per tree (1500 kg, F.W. per dunam). A yearly growth rate of 14% of the perennial organs. 3

A flesh/seed ratio of 84/16 in the avocado fruit. Table 2. The yearly utilization of dry matter in the organs of an avocado tree. Fresh weight (g) Dry Matter (%) Dry Matter (g) Yearly Addition (%) Yearly addition of fresh weight (g) Perennial Organs: 176300 44.3 78100 14 10934 New organs: Roots 4100 37.1 1523 100 1523 Shoots 1200 36 430 100 430 Leaves 24000 40 9600 100 9600 Inflorescences 8094 20.2 1643 100 1643 Total: (Without fruit) 213694 42.7 91296 26.4 24130 Fruit: 53571 Fruit flesh (84%) 45000 21 (9450) F.f.con. 14660 Fruit Seed (16%) 8571 40 3428 18088 Total: (including fruit) 267265 44.9 109384 38.6 42218 Perennial organs: scaffold roots, trunk and branches. FW (g): fresh weight, grams. DW (g): dry matter, grams. F.f.con.: Oil and protein in the fruit flesh converted to equivalent carbohydrate units. The yearly growth of every organ, presented in the Table 2, has been divided to months according to data from research reports, or to the author s assumptions, when no data were available (Table 3). Table 3. The monthly increase in dry matter of an avocado tree (total 42218). Month: Ma A M J J Au S O N D J F WF 2147 1705 3507 4017 4003 3317 1713 1121 830 734 619 417 Fruit 123 261 1933 3663 5345 6763 Total 2147 1705 3630 4278 5936 6980 7058 7884 830 734 619 417 Month: from March to February WF: Without fruit. The energy balance of the growing avocado fruit The periodic accumulation of all energy comprising components in an avocado fruit were calculated, while the fruit s own photosynthetic carbohydrate production was estimated for the same periods. The calculations were based on the periodical measurements of net efflux of CO 2 of attached avocado fruit cv. Booth 7, which enabled Whiley et al. (1992) to calculate the 4

fruit photosynthesis, and on data of fresh weight and oil content accumulation of growing Fuerte fruits, presented by Ofer (1986). The periodical dry matter weight of fruits, presented in both studies, has been used as connection numbers. That means, that the rate of assimilation, recorded in a Booth 7 fruit of a certain dry matter weight, were related to a Fuerte fruit with the same dry matter weight. The calculations have been made for fruits during the first period of 10 weeks after anthesis and afterwards for fruits during 8 periods, of two weeks each, until the 26th week after anthesis (Table 4). Table 4. Self produced energy of an avocado fruit and its percentage of the total energy accumulated in a fruit unit. (1) Weeks After Anthesis (2) Fruit Fresh Weight (g) (3) Oil in Fruit (%) (4) Fruit Assimilation of CO 2 (nmol fruit -1 s -1 ) 5 (5) Energy Produced in 1 Hour Fruit Assimilation (Kcal) (6) Fruit Self assimilation Percentage of Fruit Total Accumulated Energy (%) 10 12 3 0.0074 21.3 12 32 10 0.0247 9.5 14 58 2.8 18 0.0445 8.3 16 100 2.6 30 0.0740 10.9 18 135 3.5 38 0.0940 12.0 20 163 4.7 47 0.1160 12.9 22 181 7.1 50 0.1240 13.3 24 208 7.9 53 0.1310 12.6 26 235 9.7 55 0.1360 10.7 The figures presented in Table 3, indicate that there are two main periods during fruit growth, connected to the fruit s own photosynthetic activity. 1) The first ten weeks after anthesis, when the fruit s self assimilation provides about 20% of the total energy which accumulates in the fruit. 2) The remaining growing period, from the eleventh week on, when the fruit s self assimilation provides only about 10% of its accumulated energy. This is the place to remind that in the spring season the assimilation efficiency of most of the previous year leaves are reduced towards shedding. At that time the new flushing leaves are still a sink for assimilates rather than a source. During this period a quick reduction in the starch reservoir level takes place in the avocado tree. Those facts emphasize the importance of the self assimilation of the young fruits for their development and survival. According to the figures in column (4) Table 4, the fruit s self assimilation increases constantly during the period of fruit growth but its share, out of the total dry matter accumulated in the fruit, is reduced.

The yearly production and utilization of dry matter in an avocado tree Since the monthly assimilation and the monthly increase in dry matter of an avocado tree have been presented, it is now possible to calculate the production and utilization of an avocado tree during a year. The calculation of the dry matter production has been made by multiplying the calculated monthly assimilation, given in mol of CO 2, by 30 g (the weight of 1/6 mol glucose) (Table 5). In order to estimate the maintenance respiration rate (Rm) of an avocado tree, the weight of an uprooted Hass tree, presented by Lovatt (1996), has been used. The utilization of dry matter for maintenance respiration has been calculated as 3% of the phytomass of the growing tissues between May and August, 2% during March, April, September and October, and 1% between November and February. The total monthly utilization of fry matter of an avocado tree is obtained by adding the monthly Rm to the monthly growth (Table 6). Table 5. The monthly dry matter (g) production of a standard avocado tree. Month: Ma A M J J Au S O N D J F 1. 1920 2445 2565 3600 4872 6486 6300 5280 4323 3480 2835 2385 2. 26 56 172 421 700 791 1+2 1920 2445 2591 3656 5044 6907 7000 6071 4323 3480 2835 2385 %C 27.3 6.0 41.0 38.0 37.0 1.3-13.3-29.0-19.5-18.5-16.0 Month: from March to February. 1. Monthly dry matter production by leaf. (The yearly total production per tree 46491 g D.M.) 2. Monthly dry matter production by fruit. (The yearly total production per tree 2166 g D.M.) 1+2: Total yearly dry matter production 48657g. %C: The monthly change in dry matter production. Table 6. The monthly utilization of dry matter (g) of a standard avocado tree. Month Ma A M J J Au S O N D J F 1.R m 232 203 310 316 323 329 224 228 114 114 114 114 2.Gr 2147 1705 3630 4278 5936 6980 7058 7884 830 734 619 417 1+2 2379 1908 3940 4594 6259 7309 7282 8112 944 848 733 531 %C -20 106 16.6 36.2 16.8-11.4-88.4-10 -13.5-27.6 Month: from March to February. Rm.: Monthly maintenance respiration (The yearly total utilization 2621 g. D.M. per tree). Gr.: Monthly growth (The total yearly growth 42218 g D.M. per tree). 1+2: Total yearly dry matter utilization: 44839 g. per tree. %C: The monthly change in dry matter utilization, per tree. 6

Table 7. The monthly difference between production and utilization of dry mattering per tree of a standard avocado tree (Dif.). The accumulation of the monthly differences (Acc.). Month: Ma A M J J Au S O N D J F - + - - - - - - + + + + Dif. 537 3379 2632 2102 1854 459 1908 1349 938 1215 402 282 2041 - + - - - - - - - - + + Acc. 78 1964 3818 459 1271 2209 3424 3826 4108 6149 2770 138 Month: from March to February. CONCLUSIONS According to Table 7, during seven out of twelve months, the utilization of dry matter, of an avocado tree, exceeds its current production. During this period, the tree s starch reserves are the source for the surplus demand of dry matter. It has been reported by Whiley and Wolstenholme (1990) that the starch reserves in the avocado trunk are reduced during the period of March to June. Yet, more information, about the starch reserves in other organs of the avocado tree is needed, in order to understand the carbohydrate utilization during the year. It has to be mentioned that the data of this essay are based on an assumption that the whole crop has been harvested by the end of October. Any delay in the harvest date changes the utilization of dry matter during the winter period. The main dry matter production occurs in the avocado tree during the period of July to October (Table 6). But even during those months, the tree s current assimilation does not supply its current demand for assimilates (with a crop of 1.5 per dunam). According to Table 6, the utilization of dry matter in the avocado tree increases dramatically in May. The increase of the dry matter production is very low in this month (Table 5) (May is a month of heavy leaf shedding). It can be concluded that main factor of fruitlet drop, which occurs in May, is related to the tree s lack of capability to supply sufficient carbohydrates to satisfy the current demands. According to figures presented in the last column of Table 4, the self assimilation of the avocado fruit supplies about 20% of its energy accumulating components during the period of May and June. When the above mentioned shortage in carbohydrates is taken into account, the importance of the fruit self supply, although partial supply, comes into prominence. There is no doubt that flowering is the main event, in the yearly cycle of every fruit tree, that determines its development The dry matter utilization in the avocado tree during March (Table 6), is about four times higher than during the previous month. This figure which present mainly the need for dry matter for flowering, 1643 g D.W. (Table 2) out of 7

2147 g D.W. total D.W. utilization for growth (Table 6), causes a deficiency in the current supply of assimilates and the necessity to use starch reserves to support the current needs. The calculated figures in the last row of Table 1, present the gap between the actual assimilation of the avocado tree and its assimilation potential. Orchardists must be aware of this gap as well as of the differences between the avocado tree monthly dry matter production and utilization. Every measure that will be taken in the future towards reduction of those gaps may result in increased avocado yields. ACKNOWLEDGEMENTS I gratefully acknowledge Mr. Sharon and Prof. Bravdo for providing the data about the avocado assimilation and Dr. Bustan for his generous assistance. LITERATURE CITED CAMERON S.H.; MUELLER, R.T.; WALLACE, A. 1952. Nutrient composition and seasonal losses of avocado trees. California Avocado Society Yearbook 37: 201-207. HARPAZ, A.; GAL, S.; GOLDSCHMIDT, E.E.; RABBER, D.; GELB, E. 1990. A model of the annual cycle of dry matter production and partition in Citrus and other ever green fruit trees. Acta Hort. 276: 149-153. LOVATT, C.J. 1996. Nitrogen allocation within the Hass Avocado. California Avocado Society Yearbook 79: 75-83. OFER, R. 1986. The maturity of avocado fruits. MSc Thesis. Faculty of Agric., The Hebrew Univ. Of Jerusalem (In Hebrew). PLOETZ, R.C.; RAMOS, J.L.; PARRADO, J.L. 1992. Shoot and root phenology of avocado. Proceeding of Second Avocado Congress. pp. 215-220. WHILEY, A.W.; SCHAFFER, B.; LARA, S.P. 1992. Carbon dioxide exchange of developing avocado fruit. Tree Physiology 11: 85-94. WHILEY, A.W.; WOLSTENHOLME, B.N. 1990. Carbohydrate management in avocado trees for increased production. South African Avocado Growers Association Yearbook 13: 25-27. WOLSTENHOLME, B.N. 1986. Energy costs of fruiting as a yield limiting factor with special reference to avocado. Acta Hort. 175: 121-126. 8