Master planning in semiconductor manufacturing exercise

Similar documents
Introduction to Management Science Midterm Exam October 29, 2002

Mini Project 3: Fermentation, Due Monday, October 29. For this Mini Project, please make sure you hand in the following, and only the following:

Decision making with incomplete information Some new developments. Rudolf Vetschera University of Vienna. Tamkang University May 15, 2017

An Optimization Model for Winery Capacity Use. Christos Kolympiris University of Missouri. Michael Thomsen University of Arkansas

Appendix A. Table A.1: Logit Estimates for Elasticities

Guided Study Program in System Dynamics System Dynamics in Education Project System Dynamics Group MIT Sloan School of Management 1

Gail E. Potter, Timo Smieszek, and Kerstin Sailer. April 24, 2015

A WINERY COMPUTER MODEL

On-line Appendix for the paper: Sticky Wages. Evidence from Quarterly Microeconomic Data. Appendix A. Weights used to compute aggregate indicators

How Many of Each Kind?

End to End Chilled Water Optimization Merck West Point, PA Site

Stochastic Modelling of Linear Programming Application to Brewing Operational Systems

Analysis of Things (AoT)

Outline. o Global Dairy Overview o U.S Milk Production o Dairy Product Production, Stocks, Trade o Outlook. Copyright 2017 Daily Dairy Report, Inc.

Synchronous Systems. Asynchronous Circuit Design. Synchronous Disadvantages. Synchronous Advantages. Asynchronous Advantages. Asynchronous Systems

CRUSHING & SCREENING SYSTEMS

Appendix Table A1 Number of years since deregulation

To: Professor Roger Bohn & Hyeonsu Kang Subject: Big Data, Assignment April 13th. From: xxxx (anonymized) Date: 4/11/2016

Innovations for a better world. Ingredient Handling For bakeries and other food processing facilities

International Trade CHAPTER 3: THE CLASSICAL WORL OF DAVID RICARDO AND COMPARATIVE ADVANTAGE

Chapter 1: The Ricardo Model

Structural Reforms and Agricultural Export Performance An Empirical Analysis

1 hour 15 minutes. ( 9 pages + 1 page extra graph paper + 1 page fun reading ) Question Total Score (a) 15. (b) 20. (c) 20. (d) 20. (e) 15.

HONDURAS. A Quick Scan on Improving the Economic Viability of Coffee Farming A QUICK SCAN ON IMPROVING THE ECONOMIC VIABILITY OF COFFEE FARMING

Senarath Dharmasena Department of Agricultural Economics Texas A&M University College Station, TX

An application of cumulative prospect theory to travel time variability

Economics 452 International Trade Theory and Policy Fall 2013

Herbacel - AQ Plus Citrus. for optimising the quality, calorie content and cost of burger patties

ETHIOPIA. A Quick Scan on Improving the Economic Viability of Coffee Farming A QUICK SCAN ON IMPROVING THE ECONOMIC VIABILITY OF COFFEE FARMING

Ideas for group discussion / exercises - Section 3 Applying food hygiene principles to the coffee chain

Big Data and the Productivity Challenge for Wine Grapes. Nick Dokoozlian Agricultural Outlook Forum February

AJAE Appendix: Testing Household-Specific Explanations for the Inverse Productivity Relationship

Perfect Italian espresso coffee. Smooth. Fragrant. Intense. For everyone.

The Economic Impact of Wine and Grapes in Lodi 2009

The R&D-patent relationship: An industry perspective

Chapter 3. Labor Productivity and Comparative Advantage: The Ricardian Model

Archival copy. For current information, see the OSU Extension Catalog:

STACKING CUPS STEM CATEGORY TOPIC OVERVIEW STEM LESSON FOCUS OBJECTIVES MATERIALS. Math. Linear Equations

User Studies for 3-Sweep

Brew Bomb X-45 Getting Started

Abstract. Introduction

Chapter 3: Labor Productivity and Comparative Advantage: The Ricardian Model

DEVELOPMENT OF A RAPID METHOD FOR THE ASSESSMENT OF PHENOLIC MATURITY IN BURGUNDY PINOT NOIR

Coffee weather report November 10, 2017.

INDIA: END OF THE SUGAR CYCLE? PRESENTED BY: ABINASH VERMA, DG, ISMA

wine 1 wine 2 wine 3 person person person person person

ICE CREAM CONE MAKING

This appendix tabulates results summarized in Section IV of our paper, and also reports the results of additional tests.

Thermal Hydraulic Analysis of 49-2 Swimming Pool Reactor with a. Passive Siphon Breaker

Chapter 5, Section 2. Systems of Linear Equations in Two Variables

Gasoline Empirical Analysis: Competition Bureau March 2005

Data Science and Service Research Discussion Paper

Harvest times vary between growing regions and seasons. As an approximation, harvest times for the most common types are:

Italian Wine Market Structure & Consumer Demand. A. Stasi, A. Seccia, G. Nardone

Online Appendix to. Are Two heads Better Than One: Team versus Individual Play in Signaling Games. David C. Cooper and John H.

Week 5 Objectives. Subproblem structure Greedy algorithm Mathematical induction application Greedy correctness

THE COBURN COMPANY, INC. PO Box 147 Whitewater, WI U.S.A. Phone: Fax:

Panorama. Packaging technology > Packaging your ideas... The Magazine from the Piepenbrock Group

DRAG REDUCING AGENT: A MULTI-USE TOOL FOR LIQUID PIPELINE COMPANIES. David H. Rew and Steven R. Sandman Lakehead Pipe Line Co.

What does radical price change and choice reveal?

Presentation from the USDA Agricultural Outlook Forum 2017

Case Study 8. Topic. Basic Concepts. Team Activity. Develop conceptual design of a coffee maker. Perform the following:

Butadiene opportunities in the Middle East. Petchem Arabia 2013 Abu Dhabi, May 2013

Curtis Miller MATH 3080 Final Project pg. 1. The first question asks for an analysis on car data. The data was collected from the Kelly

Emerging Local Food Systems in the Caribbean and Southern USA July 6, 2014

WAREHOUSING&MATERIAL FLOW SÁRVÁR SITE

Company Overview. Our malting barley supply chain. Our Agri team. Founded on current site location by Mathew Minch in 1847.

International Collegiate Programming Contest South German Winter Contest. January 31, 2009

Economics 101 Spring 2016 Answers to Homework #1 Due Tuesday, February 9, 2016

Economic History of the US

The aim of the thesis is to determine the economic efficiency of production factors utilization in S.C. AGROINDUSTRIALA BUCIUM S.A.

Panorama. Packaging technology > Packaging your ideas... The Magazine from the Piepenbrock Group

SUPPLY RESPONSE IN GRAPE PRODUCTION TO A VINE PULL SCHEME. Geoff Kaine and Jeff Gow. November UNE Working Papers in Economics No.

Demand, Supply and Market Equilibrium. Lecture 4 Shahid Iqbal

The Wild Bean Population: Estimating Population Size Using the Mark and Recapture Method

What makes a good muffin? Ivan Ivanov. CS229 Final Project

Analog IC Design With Low-Dropout Regulators (LDOs) (Electronic Engineering) PDF

Re: Winery-Vineyard Economic Impacts

Wine Rating Prediction

ANALYSIS OF THE EVOLUTION AND DISTRIBUTION OF MAIZE CULTIVATED AREA AND PRODUCTION IN ROMANIA

AN INTRODUCTION TO CONSTELLIUM S PACKAGING AND RECYCLING CAPABILITIES Don Farrington October 25-26, 2017

Pasta Market in Italy to Market Size, Development, and Forecasts

Consequential Life Cycle Assessment of pisco production in the Ica Valley, Peru

THE ECONOMIC IMPACT OF BEER TOURISM IN KENT COUNTY, MICHIGAN

Detecting Melamine Adulteration in Milk Powder

Relationships Among Wine Prices, Ratings, Advertising, and Production: Examining a Giffen Good

Flexible Imputation of Missing Data

Asynchronous Circuit Design

Preview. Introduction. Chapter 3. Labor Productivity and Comparative Advantage: The Ricardian Model

Effect of SPT Hammer Energy Efficiency in the Bearing Capacity Evaluation in Sands

Injection, Modularity, and Testing

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP ( 1

PRICINPLE OF RATIONAL

Coffee Burr Grinder. Model #559. Instructions. Warranty

TEST REPORT. According to ANSI/IES LM For

Coke Machine Parts Manual

Effects of political-economic integration and trade liberalization on exports of Italian Quality Wines Produced in Determined Regions (QWPDR)

QUALITY, PRICING AND THE PERFORMANCE OF THE WHEAT INDUSTRY IN SOUTH AFRICA

Chapter 3 Labor Productivity and Comparative Advantage: The Ricardian Model

Welcome. ETNA Coffee Technologies Company presentation

Transcription:

Master planning in semiconductor manufacturing exercise Outline of the LP model for master planning We consider a semiconductor manufacturer with a three-stage production: Wafer fab, assembly, testing facility. In between are the respective inventories (Fig. 1). Wafer Fab Die Assembly Test Test Bank WIP FGI Figure 1: The three-stage production system (FGI Finished Goods Inventory) We set the following assumptions: The system produces one product (integrated circuit (IC), denoted j) and one wafer type (denoted k). Note that the product index changes from the wafer to the individual chip, termed die. Separating the dies that are produced on one wafer is performed in the assembly stage. The lead time for the wafer fab is 3 periods, the lead times for assembly and test are 1 period. The yield of assembly and test is 100% (no defective parts at these stages). Decision variables: A T P, P Production quantity of product j in period t in the assembly and testing facility, jt jt respectively W P kt Production quantity of the wafer type k in period t in the wafer fab W R kt Release quantity of the wafer type k in period t to the wafer fab A T I jt, I jt Inventory of product j at the end of period t in the test WIP (after assembly) and in the FGI (after testing), respectively W I kt Inventory of the wafer type k at the end of period t 1

Parameters D jt Demand for product j in period t f kj Bill-of-Material coefficient, that is, the reciprocal of the number of dies meeting the quality standards (that can be assembled) per wafer. We assume 400 dies per wafer, that is, f 1 kj. 400 The variables define the flows and the inventory levels in the system over time and thus capture the state of the entire system over time. Flows are defined for each edge (manufacturing plants, transportation links, etc.), the inventory levels are defined for each stock point. The material balance equations define the network structure. Their common structure: For our case this means: FGI balance equations: Inventory Inventory Input Output for all t t t 1 t t I I P D for all t T T T jt j, t 1 jt jt Balance equations for test WIP: I I P P for all t A A A T jt j, t 1 jt j, t 1 Note the lead time of 1 period for testing! The output from the test WIP in period t is the quantity finished from testing in period t+1. Balance equations for wafers: I I P f P for all t W W W A kt k, t 1 kt kj j, t 1 Again the inventory is depleted by the assembly quantity of the next period. If 1 unit is assembled, the wafer inventory is reduced by f kj units (which is less than 1 in this case; in the automotive industry when k denotes the wheels and j denotes the cars, f kj would be 4). Release quantities to the wafer fab (=output from the raw wafer inventory) R W kt for all t W Pk, t L 2

The following additional information is available: Planning horizon: 12 periods. Demand for the periods 1 to 12 in units (ICs): 10000,9000,8500,8000,9500,12000,14000,12000,12000,11500,10500,10000; Available capacity per period: 13000 units in Test, 12000 units in assembly, 27 wafers in the fab. No additional capacity (overtime, etc.) is available. Holding cost rates per unit and period: 4 and 5 money units (MUs) for Test WIP and FGI, respectively; 1200 MUs for the wafers. Initial inventories: 2000 units in FGI, 4000 units in Test WIP, 100 Wafers. We assume that work-in-process (WIP) in the fab at the start of the planning horizon is included in the initial wafer inventory, hence the production quantities in the fab for the periods 1 to 3 are zero (3 periods lead time!) Exercise Try to find a good (ideally: the optimal) production plan for the periods 1 to 12, that is, the production quantities and the inventory levels for all production stages (fab, assembly, test) and all inventories, respectively. You can try manually using a spreadsheet table, or optimize the master plan by linear programming. 3

Solution We use the notation given above with some obvious modifications due to the LINDO syntax. Model programmed in LINGO Model: Sets: Period /1..12/:CT,CA,CW;!Capacities Test, Assembyl, Fab.; Product /1..1/:IInitT,IInitA,IInitW;! initial inventories and holding cost rates; ProdPer (Product,Period): PA,PT,PW,IA,IT,IW,D,hT,hA,hW;!Production quantities and inventories in Test, Assembly, Fab, Demand; Endsets! Objective Function; MIN = @Sum(ProdPer: hw * IW) + @Sum(ProdPer: ha * IA) + @Sum(ProdPer: ht * IT);!Inventory Balance Equations Wafers;!For simplicity we assign the product intex J to the wafers as well; @for(prodper(j,t) T #NE# 1 #AND# T #LE# 9: IW(J,T) - IW(J,T-1) - PW(J,T) + F * PA(J,T+3) = 0); @for(prodper(j,t) T #EQ# 1: IW(J,T) - IInitW(J) - PW(J,T) + F * PA(J,T+3) = 0);!Inventory Balance Equations Test WIP; @for(prodper(j,t) T #NE# 1 #AND# T #LE# 11: IA(J,T) - IA(J,T-1) - PA(J,T) + PT(J,T+1) = 0); @for(prodper(j,t) T #EQ# 1: IA(J,T) - IInitA(J) - PA(J,T) + PT(J,T+1) = 0);!Inventory Balance Equations FGI; @for(prodper(j,t) T #NE# 1: IT(J,T) - IT(J,T-1) - PT(J,T) + D(J,T) = 0); @for(prodper(j,t) T #EQ# 1: IT(J,T) - IInitT(J) - PT(J,T) + D(J,T) = 0);!Capacity Constraints; @for(period(t): @Sum(Product(J): PT(J,T)) < CT(T)); @for(period(t): @Sum(Product(J): PA(J,T)) < CA(T)); @for(period(t): @Sum(Product(J): PW(J,T)) < CW(T));!Definition Regular Capacity; @for(period(t): CT(T) = 13000; CA(T) = 12000; CW(T) = 27); Data: D=10000,9000,8500,8000,9500,12000,14000,12000,12000,11500,10500,10000;!Initial inventories; IInitT=2000; IInitA=4000; IInitW=100; 4

F=0.0025;! Number of wafers for one integratred curcuit;!holding cost coefficients; hw=1200,1200,1200,1200,1200,1200,1200,1200,1200,1200,1200,1200; ha=4,4,4,4,4,4,4,4,4,4,4,4; ht=5,5,5,5,5,5,5,5,5,5,5,5; Enddata End Model formulation generated by LINGO MODEL: [_1] MIN= 4 * IA_1_1 + 5 * IT_1_1 + 1200 * IW_1_1 + 4 * IA_1_2 + 5 * IT_1_2 + 1200 * IW_1_2 + 4 * IA_1_3 + 5 * IT_1_3 + 1200 * IW_1_3 + 4 * IA_1_4 + 5 * IT_1_4 + 1200 * IW_1_4 + 4 * IA_1_5 + 5 * IT_1_5 + 1200 * IW_1_5 + 4 * IA_1_6 + 5 * IT_1_6 + 1200 * IW_1_6 + 4 * IA_1_7 + 5 * IT_1_7 + 1200 * IW_1_7 + 4 * IA_1_8 + 5 * IT_1_8 + 1200 * IW_1_8 + 4 * IA_1_9 + 5 * IT_1_9 + 1200 * IW_1_9 + 4 * IA_1_10 + 5 * IT_1_10 + 1200 * IW_1_10 + 4 * IA_1_11 + 5 * IT_1_11 + 1200 * IW_1_11 + 4 * IA_1_12 + 5 * IT_1_12 + 1200 * IW_1_12 ; [_2] - IW_1_1 - PW_1_2 + IW_1_2 + 0.0025 * PA_1_5 = 0 ; [_3] - IW_1_2 - PW_1_3 + IW_1_3 + 0.0025 * PA_1_6 = 0 ; [_4] - IW_1_3 - PW_1_4 + IW_1_4 + 0.0025 * PA_1_7 = 0 ; [_5] - IW_1_4 - PW_1_5 + IW_1_5 + 0.0025 * PA_1_8 = 0 ; [_6] - IW_1_5 - PW_1_6 + IW_1_6 + 0.0025 * PA_1_9 = 0 ; [_7] - IW_1_6 - PW_1_7 + IW_1_7 + 0.0025 * PA_1_10 = 0 ; [_8] - IW_1_7 - PW_1_8 + IW_1_8 + 0.0025 * PA_1_11 = 0 ; [_9] - IW_1_8 - PW_1_9 + IW_1_9 + 0.0025 * PA_1_12 = 0 ; [_10] - PW_1_1 + IW_1_1 + 0.0025 * PA_1_4 = 100 ; [_11] - IA_1_1 - PA_1_2 + IA_1_2 + PT_1_3 = 0 ; [_12] - IA_1_2 - PA_1_3 + IA_1_3 + PT_1_4 = 0 ; [_13] - IA_1_3 - PA_1_4 + IA_1_4 + PT_1_5 = 0 ; [_14] - IA_1_4 - PA_1_5 + IA_1_5 + PT_1_6 = 0 ; [_15] - IA_1_5 - PA_1_6 + IA_1_6 + PT_1_7 = 0 ; [_16] - IA_1_6 - PA_1_7 + IA_1_7 + PT_1_8 = 0 ; [_17] - IA_1_7 - PA_1_8 + IA_1_8 + PT_1_9 = 0 ; [_18] - IA_1_8 - PA_1_9 + IA_1_9 + PT_1_10 = 0 ; [_19] - IA_1_9 - PA_1_10 + IA_1_10 + PT_1_11 = 0 ; [_20] - IA_1_10 - PA_1_11 + IA_1_11 + PT_1_12 = 0 ; [_21] - PA_1_1 + IA_1_1 + PT_1_2 = 4000 ; [_22] - IT_1_1 - PT_1_2 + IT_1_2 = - 9000 ; [_23] - IT_1_2 - PT_1_3 + IT_1_3 = - 8500 ; [_24] - IT_1_3 - PT_1_4 + IT_1_4 = - 8000 ; [_25] - IT_1_4 - PT_1_5 + IT_1_5 = - 9500 ; [_26] - IT_1_5 - PT_1_6 + IT_1_6 = - 12000 ; [_27] - IT_1_6 - PT_1_7 + IT_1_7 = - 14000 ; [_28] - IT_1_7 - PT_1_8 + IT_1_8 = - 12000 ; [_29] - IT_1_8 - PT_1_9 + IT_1_9 = - 12000 ; [_30] - IT_1_9 - PT_1_10 + IT_1_10 = - 11500 ; [_31] - IT_1_10 - PT_1_11 + IT_1_11 = - 10500 ; [_32] - IT_1_11 - PT_1_12 + IT_1_12 = - 10000 ; [_33] - PT_1_1 + IT_1_1 = - 8000 ; [_34] PT_1_1 <= 13000 ; [_35] PT_1_2 <= 13000 ; [_36] PT_1_3 <= 13000 ; [_37] PT_1_4 <= 13000 ; [_38] PT_1_5 <= 13000 ; [_39] PT_1_6 <= 13000 ; [_40] PT_1_7 <= 13000 ; [_41] PT_1_8 <= 13000 ; 5

[_42] PT_1_9 <= 13000 ; [_43] PT_1_10 <= 13000 ; [_44] PT_1_11 <= 13000 ; [_45] PT_1_12 <= 13000 ; [_46] PA_1_1 <= 12000 ; [_47] PA_1_2 <= 12000 ; [_48] PA_1_3 <= 12000 ; [_49] PA_1_4 <= 12000 ; [_50] PA_1_5 <= 12000 ; [_51] PA_1_6 <= 12000 ; [_52] PA_1_7 <= 12000 ; [_53] PA_1_8 <= 12000 ; [_54] PA_1_9 <= 12000 ; [_55] PA_1_10 <= 12000 ; [_56] PA_1_11 <= 12000 ; [_57] PA_1_12 <= 12000 ; [_58] PW_1_1 <= 27 ; [_59] PW_1_2 <= 27 ; [_60] PW_1_3 <= 27 ; [_61] PW_1_4 <= 27 ; [_62] PW_1_5 <= 27 ; [_63] PW_1_6 <= 27 ; [_64] PW_1_7 <= 27 ; [_65] PW_1_8 <= 27 ; [_66] PW_1_9 <= 27 ; [_67] PW_1_10 <= 27 ; [_68] PW_1_11 <= 27 ; [_69] PW_1_12 <= 27 ; END 6

Model Solution Global optimal solution found. Objective value: 173300.0 Infeasibilities: 0.000000 Total solver iterations: 26 Variable Value Reduced Cost F 0.2500000E-02 0.000000 CT( 1) 13000.00 0.000000 CT( 2) 13000.00 0.000000 CT( 3) 13000.00 0.000000 CT( 4) 13000.00 0.000000 CT( 5) 13000.00 0.000000 CT( 6) 13000.00 0.000000 CT( 7) 13000.00 0.000000 CT( 8) 13000.00 0.000000 CT( 9) 13000.00 0.000000 CT( 10) 13000.00 0.000000 CT( 11) 13000.00 0.000000 CT( 12) 13000.00 0.000000 CA( 1) 12000.00 0.000000 CA( 2) 12000.00 0.000000 CA( 3) 12000.00 0.000000 CA( 4) 12000.00 0.000000 CA( 5) 12000.00 0.000000 CA( 6) 12000.00 0.000000 CA( 7) 12000.00 0.000000 CA( 8) 12000.00 0.000000 CA( 9) 12000.00 0.000000 CA( 10) 12000.00 0.000000 CA( 11) 12000.00 0.000000 CA( 12) 12000.00 0.000000 CW( 1) 27.00000 0.000000 CW( 2) 27.00000 0.000000 CW( 3) 27.00000 0.000000 CW( 4) 27.00000 0.000000 CW( 5) 27.00000 0.000000 CW( 6) 27.00000 0.000000 CW( 7) 27.00000 0.000000 CW( 8) 27.00000 0.000000 CW( 9) 27.00000 0.000000 CW( 10) 27.00000 0.000000 CW( 11) 27.00000 0.000000 CW( 12) 27.00000 0.000000 IINITT( 1) 2000.000 0.000000 IINITA( 1) 4000.000 0.000000 IINITW( 1) 100.0000 0.000000 PA( 1, 1) 5000.000 0.000000 PA( 1, 2) 8500.000 0.000000 PA( 1, 3) 8000.000 0.000000 PA( 1, 4) 11500.00 0.000000 PA( 1, 5) 12000.00 0.000000 PA( 1, 6) 12000.00 0.000000 PA( 1, 7) 12000.00 0.000000 PA( 1, 8) 12000.00 0.000000 PA( 1, 9) 11500.00 0.000000 PA( 1, 10) 10500.00 0.000000 PA( 1, 11) 10000.00 0.000000 PA( 1, 12) 10800.00 0.000000 PT( 1, 1) 8000.000 0.000000 PT( 1, 2) 9000.000 0.000000 7

PT( 1, 3) 8500.000 0.000000 PT( 1, 4) 8000.000 0.000000 PT( 1, 5) 9500.000 0.000000 PT( 1, 6) 13000.00 0.000000 PT( 1, 7) 13000.00 0.000000 PT( 1, 8) 12000.00 0.000000 PT( 1, 9) 12000.00 0.000000 PT( 1, 10) 11500.00 0.000000 PT( 1, 11) 10500.00 0.000000 PT( 1, 12) 10000.00 0.000000 PW( 1, 1) 0.000000 3600.000 PW( 1, 2) 0.000000 2400.000 PW( 1, 3) 0.000000 1200.000 PW( 1, 4) 23.50000 0.000000 PW( 1, 5) 27.00000 0.000000 PW( 1, 6) 27.00000 0.000000 PW( 1, 7) 26.25000 0.000000 PW( 1, 8) 25.00000 0.000000 PW( 1, 9) 27.00000 0.000000 PW( 1, 10) 0.000000 0.000000 PW( 1, 11) 0.000000 0.000000 PW( 1, 12) 0.000000 0.000000 IA( 1, 1) 0.000000 4.000000 IA( 1, 2) 0.000000 4.000000 IA( 1, 3) 0.000000 13.00000 IA( 1, 4) 2000.000 0.000000 IA( 1, 5) 1000.000 0.000000 IA( 1, 6) 0.000000 3.000000 IA( 1, 7) 0.000000 1.000000 IA( 1, 8) 0.000000 1.000000 IA( 1, 9) 0.000000 10.00000 IA( 1, 10) 0.000000 4.000000 IA( 1, 11) 0.000000 4.000000 IA( 1, 12) 0.000000 4.000000 IT( 1, 1) 0.000000 5.000000 IT( 1, 2) 0.000000 5.000000 IT( 1, 3) 0.000000 5.000000 IT( 1, 4) 0.000000 14.00000 IT( 1, 5) 0.000000 0.000000 IT( 1, 6) 1000.000 0.000000 IT( 1, 7) 0.000000 6.000000 IT( 1, 8) 0.000000 2.000000 IT( 1, 9) 0.000000 2.000000 IT( 1, 10) 0.000000 11.00000 IT( 1, 11) 0.000000 5.000000 IT( 1, 12) 0.000000 5.000000 IW( 1, 1) 71.25000 0.000000 IW( 1, 2) 41.25000 0.000000 IW( 1, 3) 11.25000 0.000000 IW( 1, 4) 4.750000 0.000000 IW( 1, 5) 1.750000 0.000000 IW( 1, 6) 0.000000 3600.000 IW( 1, 7) 0.000000 1200.000 IW( 1, 8) 0.000000 1200.000 IW( 1, 9) 0.000000 1200.000 IW( 1, 10) 0.000000 1200.000 IW( 1, 11) 0.000000 1200.000 IW( 1, 12) 0.000000 1200.000 D( 1, 1) 10000.00 0.000000 D( 1, 2) 9000.000 0.000000 D( 1, 3) 8500.000 0.000000 D( 1, 4) 8000.000 0.000000 8

D( 1, 5) 9500.000 0.000000 D( 1, 6) 12000.00 0.000000 D( 1, 7) 14000.00 0.000000 D( 1, 8) 12000.00 0.000000 D( 1, 9) 12000.00 0.000000 D( 1, 10) 11500.00 0.000000 D( 1, 11) 10500.00 0.000000 D( 1, 12) 10000.00 0.000000 HT( 1, 1) 5.000000 0.000000 HT( 1, 2) 5.000000 0.000000 HT( 1, 3) 5.000000 0.000000 HT( 1, 4) 5.000000 0.000000 HT( 1, 5) 5.000000 0.000000 HT( 1, 6) 5.000000 0.000000 HT( 1, 7) 5.000000 0.000000 HT( 1, 8) 5.000000 0.000000 HT( 1, 9) 5.000000 0.000000 HT( 1, 10) 5.000000 0.000000 HT( 1, 11) 5.000000 0.000000 HT( 1, 12) 5.000000 0.000000 HA( 1, 1) 4.000000 0.000000 HA( 1, 2) 4.000000 0.000000 HA( 1, 3) 4.000000 0.000000 HA( 1, 4) 4.000000 0.000000 HA( 1, 5) 4.000000 0.000000 HA( 1, 6) 4.000000 0.000000 HA( 1, 7) 4.000000 0.000000 HA( 1, 8) 4.000000 0.000000 HA( 1, 9) 4.000000 0.000000 HA( 1, 10) 4.000000 0.000000 HA( 1, 11) 4.000000 0.000000 HA( 1, 12) 4.000000 0.000000 HW( 1, 1) 1200.000 0.000000 HW( 1, 2) 1200.000 0.000000 HW( 1, 3) 1200.000 0.000000 HW( 1, 4) 1200.000 0.000000 HW( 1, 5) 1200.000 0.000000 HW( 1, 6) 1200.000 0.000000 HW( 1, 7) 1200.000 0.000000 HW( 1, 8) 1200.000 0.000000 HW( 1, 9) 1200.000 0.000000 HW( 1, 10) 1200.000 0.000000 HW( 1, 11) 1200.000 0.000000 HW( 1, 12) 1200.000 0.000000 Row Slack or Surplus Dual Price 1 173300.0-1.000000 2 0.000000-2400.000 3 0.000000-1200.000 4 0.000000 0.000000 5 0.000000 1200.000 6 0.000000 2400.000 7 0.000000 0.000000 8 0.000000 0.000000 9 0.000000 0.000000 10 0.000000-3600.000 11 0.000000 0.000000 12 0.000000 0.000000 13 0.000000-9.000000 14 0.000000-5.000000 15 0.000000-1.000000 9

16 0.000000 0.000000 17 0.000000 3.000000 18 0.000000 6.000000 19 0.000000 0.000000 20 0.000000 0.000000 21 0.000000 0.000000 22 0.000000 0.000000 23 0.000000 0.000000 24 0.000000 0.000000 25 0.000000-9.000000 26 0.000000-4.000000 27 0.000000 1.000000 28 0.000000 0.000000 29 0.000000 3.000000 30 0.000000 6.000000 31 0.000000 0.000000 32 0.000000 0.000000 33 0.000000 0.000000 34 5000.000 0.000000 35 4000.000 0.000000 36 4500.000 0.000000 37 5000.000 0.000000 38 3500.000 0.000000 39 0.000000 1.000000 40 0.000000 2.000000 41 1000.000 0.000000 42 1000.000 0.000000 43 1500.000 0.000000 44 2500.000 0.000000 45 3000.000 0.000000 46 7000.000 0.000000 47 3500.000 0.000000 48 4000.000 0.000000 49 500.0000 0.000000 50 0.000000 1.000000 51 0.000000 2.000000 52 0.000000 0.000000 53 0.000000 0.000000 54 500.0000 0.000000 55 1500.000 0.000000 56 2000.000 0.000000 57 1200.000 0.000000 58 27.00000 0.000000 59 27.00000 0.000000 60 27.00000 0.000000 61 3.500000 0.000000 62 0.000000 1200.000 63 0.000000 2400.000 64 0.7500000 0.000000 65 2.000000 0.000000 66 0.000000 0.000000 67 27.00000 0.000000 68 27.00000 0.000000 69 27.00000 0.000000 70 0.000000 0.000000 71 0.000000 0.000000 72 0.000000 0.000000 73 0.000000 0.000000 74 0.000000 0.000000 75 0.000000 0.000000 76 0.000000 0.000000 77 0.000000 0.000000 10

78 0.000000 0.000000 79 0.000000 0.000000 80 0.000000 0.000000 81 0.000000 0.000000 82 0.000000 0.000000 83 0.000000 1.000000 84 0.000000 1200.000 85 0.000000 1.000000 86 0.000000 2.000000 87 0.000000 2400.000 88 0.000000 2.000000 89 0.000000 0.000000 90 0.000000 0.000000 91 0.000000 0.000000 92 0.000000 0.000000 93 0.000000 0.000000 94 0.000000 0.000000 95 0.000000 0.000000 96 0.000000 0.000000 97 0.000000 0.000000 98 0.000000 0.000000 99 0.000000 0.000000 100 0.000000 0.000000 101 0.000000 0.000000 102 0.000000 0.000000 103 0.000000 0.000000 104 0.000000 0.000000 105 0.000000 0.000000 The values of the decision variables in the optimal solution can be seen immediately, the interpretation of the other results (reduced cost, Slack or Surplus, Dual Price) is described in the exercise on aggregate production planning. 11