EFFECT OF THE FORECAST CLIMATE CHANGE ON THE GRAPEVINE WATER REQUIREMENTS IN THE BYDGOSZCZ REGION

Similar documents
Regression Models for Saffron Yields in Iran

Coffee market ends 2017/18 in surplus

Eden Valley Wine Region. Regional summary report WINEGRAPE UTILISATION AND PRICING SURVEY 2007

ANALYSIS OF THE EVOLUTION AND DISTRIBUTION OF MAIZE CULTIVATED AREA AND PRODUCTION IN ROMANIA

Coffee market continues downward trend

IMPACT OF RAINFALL AND TEMPERATURE ON TEA PRODUCTION IN UNDIVIDED SIVASAGAR DISTRICT

Quality of western Canadian flaxseed 2012

Quality of western Canadian peas 2009

Coffee weather report November 10, 2017.

Agnieszka Masny Edward Żurawicz

Areas of Concern Extreme Weather events

Coonawarra Wine Region. Regional summary report WINEGRAPE UTILISATION AND PRICING SURVEY 2007

PEEL RIVER HEALTH ASSESSMENT

Coffee market ends 2016/17 coffee year in deficit for the third consecutive year

Malting barley prices Basis FOB Swedish /Danish Port Oct 14/15/16/17/18

McLaren Vale wine region. Regional summary report WINEGRAPE UTILISATION AND PRICING SURVEY 2007

Vintage 2006: Umpqua Valley Reference Vineyard Report

The Implications of Climate Change for the Ontario Wine Industry

D Lemmer and FJ Kruger

Quality of Canadian oilseed-type soybeans 2016

Quality of western Canadian pea beans 2009

What Went Wrong with Export Avocado Physiology during the 1996 Season?

Cocoa Prepared by Foresight December 5, 2017

Gregory V. Jones, Ph.D. Division of Business, Communication, and the Environment Department of Environmental Science and Policy

Field water balance of final landfill covers: The USEPA s Alternative Cover Assessment Program (ACAP)

Malting barley prices Basis FOB Swedish /Danish Port Basis Oct 14/15/16/17/18/19 EUR/mt 230

Testing of Early Ripening Strawberry Cultivars Tolerant to Soil-Borne Pathogens as Alternative to Elsanta

POTENTIAL OF THE LAND IN ARCHAR VILLAGE FOR CREATION OF VINES FOR QUALITY WINE GRAPE VARIETIES. CLIMATIC AND GEOGRAPHIC SPECIALITY OF THE TERROIR

Irrigation of Sunflowers in Northwestern Kansas

Volatility returns to the coffee market as prices stay low

western Canadian flaxseed 2003

Comparing canola and lupin varieties by time of sowing in the Northern Agricultural Region

SELECTION STUDIES ON FIG IN THE MEDITERRANEAN REGION OF TURKEY

Record Exports for Coffee Year 2016/17

Coffee prices rose slightly in January 2019

Buying Filberts On a Sample Basis

Tree Rings and Water Resource Management in the Southwest

July marks another month of continuous low prices

2013 Vintage Weather Summary for Two Blondes Vineyard

Vintage 2008: Umpqua Valley Reference Vineyard Report

Wrattonbully WRATTONBULLY VINTAGE OVERVIEW. WRATTONBULLY PRICE AND BAUME DATA - VINTAGE 2002 Table See map of Wrattonbully GI on page 104.

Chile. Tree Nuts Annual. Almonds and Walnuts Annual Report

IMPACT OF RAINFALL PRIOR TO HARVEST ON RIPE FRUIT QUALITY OF HASS AVOCADOS IN NEW ZEALAND

Quality of western Canadian pea beans 2011

Groundnut Production in India Scope for Extended Cultivation

Prices for all coffee groups increased in May

2018/19 expected to be the second year of surplus

Determining the Optimum Time to Pick Gwen

January 2015 WORLD GRAPE MARKET SUPPLY, DEMAND AND FORECAST

MARKET NEWSLETTER No 93 April 2015

Growing divergence between Arabica and Robusta exports

PRODUCTION AND EXPORT PERFORMANCE OF CARDAMOM IN INDIA

The aim of the thesis is to determine the economic efficiency of production factors utilization in S.C. AGROINDUSTRIALA BUCIUM S.A.

Problem Set #3 Key. Forecasting

2011 NEW YORK STATE SOYBEAN VARIETY YIELD TESTS. William J. Cox and Phil Atkins Dep. of Crop and Soil Sciences

2012 NEW YORK STATE SOYBEAN VARIETY YIELD TESTS. William J. Cox, Phil Atkins, and Mike Davis Dep. of Crop and Soil Sciences

INFLUENCE OF LIMING WITH Ca(OH) 2 AND STOCKPILING FERTILIZATION ON THE NITROGEN, PHOSPHORUS AND POTASSIUM CONTENT IN THE GRAPE OF WINE GRAPE VARIETIES

Quality of Canadian oilseed-type soybeans 2017

(A report prepared for Milk SA)

Soft Commodity Markets - Upcoming Milestones, and How the Market Could Be Affected

Study of Forage Productivity and Chemical Composition of Winter Vetch (Vicia villosa R.) under Optimization of the Factors of Sowing Time and Rate

Downward correction in coffee market as supply prospects improve

MARKET NEWSLETTER No 127 May 2018

THE NATURAL SUSCEPTIBILITY AND ARTIFICIALLY INDUCED FRUIT CRACKING OF SOUR CHERRY CULTIVARS

Economic Role of Maize in Thailand

QUARTELY MAIZE MARKET ANALYSIS & OUTLOOK BULLETIN 1 OF 2015

Statistics & Agric.Economics Deptt., Tocklai Experimental Station, Tea Research Association, Jorhat , Assam. ABSTRACT

THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S.

Record exports in coffee year 2017/18

Cultivation Pattern:

Vivekanandan, K. and G. D. Bandara. Forest Department, Rajamalwatta Road, Battaramulla, Sri Lanka.

Isis. DOK Malta Denominazzjoni ta Origini Kontrollata YEAR 2012

Coffee Season 2013/14 Finishes in Balance but Deficit Expected Next Year

Evaluation of desiccants to facilitate straight combining canola. Brian Jenks North Dakota State University

Quality of western Canadian flaxseed 2014

Coffee market ends 2015/16 in deficit for the second consecutive year

Quality of western Canadian flaxseed 2013

Drought in Northern Mexico by Andrea Munoz-Hernandez

Distribution of climate suitability for viticulture in the United Kingdom in 2100 ECRC Research Report Number 177

Cocoa Prepared by Foresight October 3, 2018

OF THE VARIOUS DECIDUOUS and

Seasonal trends in hectares planted, sales volumes on markets and market prices. Pieter van Zyl, Potatoes South Africa

BORDEAUX WINE VINTAGE QUALITY AND THE WEATHER ECONOMETRIC ANALYSIS

MONTHLY COFFEE MARKET REPORT

Dairy Market R E P O R T

Quality of western Canadian lentils 2011

MONTHLY COFFEE MARKET REPORT

Structural optimal design of grape rain shed

Uniform Rules Update Final EIR APPENDIX 6 ASSUMPTIONS AND CALCULATIONS USED FOR ESTIMATING TRAFFIC VOLUMES

UPPER MIDWEST MARKETING AREA THE BUTTER MARKET AND BEYOND

Current trends of agroclimatic indices applied to grapevine and olive tree in central Italy

Current trends of agroclimatic indices applied to grapevine and olive tree in central Italy

MARKET ANALYSIS REPORT NO 1 OF 2015: TABLE GRAPES

Quantifying Agricultural Drought: An Assessment Using Western Canadian Spring Wheat

Varieties and Rootstocks in Texas

World vitiviniculture situation

Climate Change and Wine

STATE OF THE VITIVINICULTURE WORLD MARKET

Acreage Forecast

COMPARISON OF CORE AND PEEL SAMPLING METHODS FOR DRY MATTER MEASUREMENT IN HASS AVOCADO FRUIT

Transcription:

INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS Nr IV/4/2016, POLSKA AKADEMIA NAUK, Oddział w Krakowie, s. 1847 1856 Komisja Technicznej Infrastruktury Wsi DOI: http://dx.medra.org/10.14597/infraeco.2016.4.4.138 EFFECT OF THE FORECAST CLIMATE CHANGE ON THE GRAPEVINE WATER REQUIREMENTS IN THE BYDGOSZCZ REGION Stanisław Rolbiecki, Piotr Piszczek UTP University of Science and Technology in Bydgoszcz Abstract The present research has aimed at estimating the water requirements of grapevine in 2016-2050 in the Bydgoszcz region based on the anticipated temperature changes.. The paper draws on the forecasting of mean monthly temperature for the Bydgoszcz region in 2011-2050 according to the climate change scenario for Poland SRES: A1B (Bąk, Łabędzki 2014). The water requirements of the grapevine have been determined based on the indispensable precipitation determined by Kemmer and Schulz. The water requirements were calculated for the period January through December and May through September for each year in the 35-year period (2016-2050). The reference period was made up by a 35-year period immediately preceding it (1981-2015). In the 2016-2050 period in the Bydgoszcz region, in the light of the anticipated temperature change scenarios, one can expect increased grapevine water requirements. Determined with the Kemmer and Schulz method, the required optimal annual (January-December) precipitation will increase for the grapevine from 440 mm to 576 mm (by 136 mm, namely by 31 %). The optimal precipitation trend equations demonstrate that in the reference period (1981-2015), calculated with the Kemmer and Schulz, the optimal annual precipitation was increasing in grapevine in each pentad by 2.2-2.6 mm. In the forecast period (2016-2050) the water requirements will increase, however, in each pentad in a much greater range (8.0-8.9 mm). In the summer period (May-September) determined This is an open access article under the Creative Commons BY-NC-ND licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) 1847

Stanisław Rolbiecki, Piotr Piszczek by Kemmer and Schulz, the total precipitation optimal for the grapevine, expressing the water requirements, in 2016-2050 will increase by 68 mm. Key words: grapevine, water requirements, optimal precipitation, forecast climate change, Bydgoszcz region INTRODUCTION Grapevine growing in Poland enjoys a very long tradition already as it reached our country with Christianity (Myśliwiec 2013). Already about a thousand years ago on Polish soil such warm-loving plants as grapevines were cultivated with much success (Szymanowski, Smaza 2007). Even though most grapevine plantations used to be located in Silesia and in Zielona Góra, it was still grown a lot also in the vicinity of Poznań, Płock, Włocławek and Toruń and even further, in the area between Toruń and Bydgoszcz, which is seen from the map provided in the monograph by Myśliwiec (2013). Grapevine growing was facilitated especially by higher temperature since, as reported by Woś (1999), the eleventh century, most probably, showed the temperature higher than the mean many-century and in total with the twelfth and thirteenth century formed a period considered warmest in our history. Today in Poland can be observed a greater and greater interest in grapevine growing and new vineyards are very frequently set up in the regions they had already existed in (Myśliwiec 2013). Since 1 May 2004 the territory of Poland has been considered, similarly as e.g. north-eastern federal states of Germany, Great Britain and Denmark, grapevine growing zone A; the regions hardly favorable to growing this species (Lisek 2011, Kapłan 2013). Today grapevine growing in Poland is of little economic importance, however, it is accompanied by a high social interest and fast increase in grapevine acreage (Kapłan 2013). A clearly increasing interest in grapevine growing in Poland comes, on top of others, from important reasons, e.g. advancement in growing new cultivars with a low susceptibility to fungal pathogens and frost damage; due to a gradual climate warming in Poland, which enhances grapevine growing (Lisek 2011, Kapłan 2013, Myśliwiec 2013, Łabędzki 2009). According to Łabędzki (2009), in Poland one can expect an increase in temperature by about 2-4 C. However, with different models applied, the temperature and precipitation change scenarios in Poland (in 2020, 2050 and 2080) differ significantly for the summer period (June-August). And so all the models forecast an increase in temperature, however, an increase in precipitation only some; there are also models which predict decreased precipitation (Łabędzki 2009). It is considered e.g. very likely that the July and August temperature (except for the 1848

Effect of the forecast climate change on the grapevine water requirements... coast) will exceed 25 C. Interestingly, most scenarios for Poland do not expect an increased total precipitation throughout the year. Precipitation is the basic source of water for grapevine which shows considerable water requirements (Myśliwiec 2013). Dzieżyc (1988), after Kemmer and Schulz, reports on the required annual precipitation for grapevine, respectively for the temperature range from 14.0 C to 17.0 C, falling from 380 to 500 mm. The water deficits, recorded during drought, result in a poor grapevine and fruit growth, premature shoots drying-off and leaf yellowing (Myśliwiec 2013). The highest grapevine water requirements occur at the stage of intensive grapevine growth as well as at berries growth (from mid May through mid August). At the flowering stage (June) grapevine requires moderate soil moisture and minimal air humidity. Both precipitation deficit and surplus decrease the effectiveness of flowering, whereas fruit ripening and grapevine turning woody are enhanced by no-rainfall weather. Rainfall surplus at fruit ripening (September) results in fruit cracking and getting rotten. The present research has aimed at estimating the water requirements of grapevine in 2016-2050 in the Bydgoszcz region based on the anticipated temperature changes. MATERIAL AND METHODS The paper draws on the forecasting of mean monthly temperature for the Bydgoszcz region in 2011-2050 according to the climate change scenario for Poland SRES: A1B (Bąk, Łabędzki 2014). The water requirements of the grapevine have been determined based on the indispensable precipitation determined by Kemmer and Schulz (Słowik 1973, Dzieżyc 1988). The authors have considered the optimal annual (January-December) precipitation for fruit trees and grapevine in average soil (of average compaction) to depend on mean temperature in summer (May-September), yet assuming that at least 50% of precipitation coincides with the period from 1 May to 30 September (Treder, Pacholak 2006). With the table values for the grapevine provided by Dzieżyc (1988), the regression equation was determined (Figure 1). Then the water requirements were calculated for the period January through December and May through September for each year in the 35-year period (2016-2050). The reference period was made up by a 35-year period immediately preceding it (1981-2015). Each of the two 35-year periods was divided into seven pentads for which optimal mean total precipitation values were determined. There were also defined trends for the grapevine-optimal precipitation time variation in successive 35 years (n=35) or 7 five-year periods (n=7). Excel spreadsheet was used. 1849

Stanisław Rolbiecki, Piotr Piszczek Figure 1. Relation between the mean temperature in summer (May-September) and optimal annual precipitation for grapevine according to Kemmer and Schulz in a soil of average compaction. The own elaboration on the base of the table values for the grapevine provided by Dzieżyc (1988) RESULTS AND DISCUSSION Grapevine water requirements, expressed as the optimal annual precipitation according to Kemmer and Schulz, based on the forecast 2016-2050 temperature values, show a greater variation, as compared with the reference period (1981-2015) (Table 1). The precipitation variation range, respectively for the 35-year periods, was 422-825 mm and 383-587 mm, and the coefficient of variation 18.4% and 9.2%. In the reference period (1981-2015) the optimal annual precipitation was increasing in each pentad by 2.2 mm, however, in 2016-2050 it will be increasing in an even greater range, by 8.9 mm, respectively (Table 2, Figure 2, Figure 3). The optimal mean annual precipitation is higher in each pentad of the 2016-2050 period, as compared with the reference period (1981-2015) (Table 3). The lowest mean annual precipitation of 539 mm (the 2031-2035 pentad) of the forecast period (2016-2050) is higher than the highest mean total (452 mm) reported in the 2011-2015 pentad of the reference period (1981-2015). 1850

Effect of the forecast climate change on the grapevine water requirements... Table 1. Statistical characteristics of the grapevine-optimal annual precipitation Specification Period 1981-2015 2016-2050 Minimum (mm) 383 422 Maximum (mm) 587 825 Median (mm) 439 563 Average (mm) 440 576 Standard deviation (mm) 40.5 106.3 Variation coefficient (%) 9.2 18.4 Table 2. Equations of the trend of the grapevine-optimal annual precipitation in consecutive years Period Equations of the trend R 2 Tendency of the grapevine-optimal annual precipitation (mm pentad -1 ) 1981-2015 y = 0.4489x + 431.78 0.0129 2.2 2016-2050 y = 1.7864x + 543.77 0.0296 8.9 Figure 2. Temporal variability of the grapevine-optimal annual precipitation in consecutive years of the reference period 1981-2015 1851

Stanisław Rolbiecki, Piotr Piszczek Figure 3. Temporal variability of the grapevine-optimal annual precipitation in consecutive years of the forecast period 2016-2050 Table 3. The grapevine-optimal annual precipitation according to Kemmer and Schulz in consecutive pentads for the compared periods (mm) Reference period 1981-2015 Forecast period 2016-2050 Pentad P (mm) Pentad P (mm) 1981-1985 437 2016-2020 562 1986-1990 429 2021-2025 563 1991-1995 453 2026-2030 572 1996-2000 420 2031-2035 539 2001-2005 439 2036-2040 609 2006-2010 450 2041-2045 561 2011-2015 452 2046-2050 626 Average for 1981-2015 440 Average for 2016-2050 576 1852

Effect of the forecast climate change on the grapevine water requirements... Figure 4. Temporal variability of the grapevine-optimal annual precipitation in consecutive pentads of the reference period 1981-2015 Figure 5. Temporal variability of the grapevine-optimal annual precipitation in consecutive pentads of the forecast period 2016-2050 1853

Stanisław Rolbiecki, Piotr Piszczek Table 4. Equations of the trend of the grapevine-optimal annual precipitation in consecutive pentads of compared periods Period Equations of the trend R 2 Tendency of the grapevine-optimal annual precipitation (mm pentad -1 ) 1981-2015 y = 2.5936x + 429.49 0.1981 2.6 2016-2050 y = 8.0136x + 543.87 0.3241 8.0 The optimal precipitation trend equations determined for grapevine in successive pentads (Table 4, Figure 4, Figure 5) demonstrate that in the reference period (1981-2015) the optimal annual precipitation was increasing in each pentad by 2.6 mm, while in the forecast period (2016-2050) the plant water requirements indicator value will be increasing in each pentad by 8.0 mm. Table 5. Comparison of the optimal mean precipitation for the grapevine according to Kemmer and Schulz for the compared periods (mm) Period January-December May-September 1981-2015 440 220 2016-2050 576 288 (2016-2050) (1981-2015) +136 +68 Change (%) +31 Compliant with the forecast temperature changes, the grapevine water requirements will increase from 440 mm to 576 mm (Table 5). It means that the grapevine water requirements, expressed with the optimal annual precipitation according to Kemmer and Schulz, will increase by 136 mm, namely by 31 %. According to the assumptions by Kemmer and Schulz, the grapevine water requirements from May through September will increase by 68 mm, respectively. May through September the water requirements of the grapevine will increase up to 288 mm. According to Myśliwiec (2013), the total summer precipitation in Poland is sufficient for the grapevine. However, the precipitation distribution in respective months is unfavorable since droughts often occur in May while in June, the grapevine flowering period, excessive precipitation is frequent. Dzieżyc (1988), drawing on the data reported by Kemmer and Schulz, states that the precipitation requirements (the optimal annual precipitation) of the grapevine for temperatures from May through September of 15 C and 17 C are 400 mm and 500 mm, respectively. 1854

Effect of the forecast climate change on the grapevine water requirements... RECAPITULATION AND CONCLUSIONS With the assumptions (temperature change forecast by other authors) as well as the calculations and analyses made, the following conclusions can be developed: 1. In the 2016-2050 period in the Bydgoszcz region, in the light of the anticipated temperature change scenarios, one can expect increased grapevine water requirements. Determined with the Kemmer and Schulz method, the required optimal annual (January-December) precipitation will increase for the grapevine from 440 mm to 576 mm (by 136 mm, namely by 31 %). 2. The optimal precipitation trend equations demonstrate that in the reference period (1981-2015), calculated with the Kemmer and Schulz, the optimal annual precipitation was increasing in grapevine in each pentad by 2.2-2.6 mm. In the forecast period (2016-2050) the water requirements will increase, however, in each pentad in a much greater range (8.0-8.9 mm). 3. In the summer period (May-September) determined by Kemmer and Schulz, the total precipitation optimal for the grapevine, expressing the water requirements, in 2016-2050 will increase by 68 mm. REFERENCES Bąk B., Łabędzki L. 2014. Thermal conditions in Bydgoszcz region in growing seasons 2011 2050 in view of expected climate change. Journal of Water and Land Development 23: 2014, p. 21 29. Dzieżyc J. 1988. Rolnictwo w warunkach nawadniania. PWN Warszawa, 1988, p. 1-415. Kapłan M. 2013. Możliwości uprawy winorośli w Polsce. Nauki Przyrodnicze, 2: 2013, p. 4-12. Lisek J. 2011. Winorośl w uprawie przydomowej i towarowej. Hortpress, 2011, p. 1-216. Łabędzki L. 2009. Przewidywane zmiany klimatyczne a rozwój nawodnień w Polsce. Infrastruktura i Ekologia Terenów Wiejskich 3: 2009, p. 7-18. Myśliwiec R. 2013. Uprawa winorośli. PWRiL Warszawa, 2013, p. 1-189. Słowik K. 1973. Deszczowanie roślin sadowniczych. PWRiL Warszawa, 1973, p. 1-129. Szymanowski M., Smaza M. 2007. Zmiana zasobów klimatycznych a możliwości uprawy winorośli na Dolnym Śląsku. Instytut Geografii i Rozwoju Regionalnego Uniwersytetu Wrocławskiego. Referat na XXXII Ogólnopolski Zjazd Agrometeorologów i Klimatologów. Kołobrzeg, 13-15 września 2007, p. 69-70. 1855

Stanisław Rolbiecki, Piotr Piszczek Treder W., Pacholak E. 2006. Nawadnianie roślin sadowniczych. W: Nawadnianie roślin (pr. zbior. pod red. S. Karczmarczyka i L. Nowaka), 2006, p. 333-365. Woś A. 1999. Klimat Polski. PWN, Warszawa, 1999, p. 1-302. Prof. dr hab. Stanisław Rolbiecki Department of Land Melioration and Agrometeorology UTP University of Science and Technology in Bydgoszcz 6 Bernardyńska St., 85-029 Bydgoszcz e-mail: rolbs@utp.edu.pl Doc. dr Piotr Piszczek Department of Ornamental Plants and Vegetable Crops UTP University of Science and Technology in Bydgoszcz Bernardyńska 6, 85-029 Bydgoszcz e-mail: ppisz@utp.edu.pl Received: 19.11.2016 Accepted: 02.12.2016