Development and Quality Evaluation of Yoghurt Fortified with Pineapple, Apple and Sweet Lemon Juice (Fruit Yoghurt)

Similar documents
PHYSICAL AND CHEMICAL QUALITY APPRAISAL OF COMMERCIAL YOGHURT BRANDS SOLD AT LAHORE

Replacement of cow milk chhana with soy chhana in the preparation of rasomalai

Quality characteristics of set yoghurt blended with Tender Coconut Water Milk - Carrageenan

Preparation of Lassi from safflower milk blended with buffalo milk

Studies on Preparation of Mango-Sapota Mixed Fruit Bar

Process standardization of low-calories and low-sugar kalam

Development of Value Added Products From Home-Grown Lychee

QUALITY CHARACTERISTICS OF CHEESE PRODUCED FROM THREE BREEDS OF CATTLE IN NIGERIA

Bioline International

Development and Nutritional Evaluation of Value Added Baked Products using Strawberry (Fragaria)

STUDIES ON PREPARATION OF FLAVOURED MILK FROM COW MILK BLENDED WITH SAFFLOWER MILK

Evaluation of Gouda cheese available in the Egyptian market.

MANUFACTURE OF GOLDEN MILK SHAKE FROM COW MILK BLENDED WITH SAFFLOWER MILK

SENSORY EVALUATION AND OVERALL ACCEPTABLILITY OF PANEER FROM BUFFALO MILK ADDED WITH SAGO POWDER

Agriculture Update 12 TECHSEAR preparation of Kulfi with ginger extract. and T 3 OBJECTIVES

Maurya Shalini 1, Dubey Prakash Ritu 2 Research Scholar 1, Associate Professor 2 Ethelind College of Home Science, SHUATS Allahabad, U.P.

PROCESS OPTIMIZATION FOR THE MANUFACTURE OF FILLED MILK DIETETIC PANEER

DEVELOPMENT AND STANDARDISATION OF FORMULATED BAKED PRODUCTS USING MILLETS

CHEMICAL AND MICROBIOLOGICAL EVALUATION OF YOGHURT AVAILABLE IN THE MARKET OF BANGLADESH

Pascual Corporation Business Structure

The aroma, body and flavor of yogurt

Studies on Sensory Evaluation of Jamun Juice Based Paneer Whey Beverage

DEVELOPMENT OF MILK AND CEREAL BASED EXTRUDED PRODUCTS

TURKISH FOOD CODEX COMMUNIQUÉ ON FERMENTED MILK PRODUCTS (DRAFT/2015)

NUTRITIONAL SUPPLEMENTATION OF LOW-FAT FROZEN YOGHURT INCORPORATED WITH CARROT PULP. Stuti Agarwal and Ranu Prasad

Studies on the Development of Mixed Fruit Marmalade

Procurement. Aims and objectives 01/02/2013. Background

Audrey Page. Brooke Sacksteder. Kelsi Buckley. Title: The Effects of Black Beans as a Flour Replacer in Brownies. Abstract:

UTILIZATION OF POMEGRANATE JUICE FOR THE PREPARATION OF CHAKKA WHEY BEVERAGE

Effects of Different Packaging Materials on the Shelf Stability of Ginger Juice

Modern Technology Of Milk Processing & Dairy Products (4th Edition)

Yogurt Making. Basic Steps 1. Heat milk 2. Stir in yogurt starter 3. Incubate milk to become yogurt

Performance Analysis of Industrially and Traditionally Used Cultures in Yogurt Production Considering Microbial Risk

Preparation of Cupcake Using Whey Powder as Egg Replacer

Food Science and Technology Notes

Evaluation of quality of mozzarella cheese

Preparation of strawberry Lassi

Pakistan Journal of Life and Social Sciences

International Journal of Pharma and Bio Sciences FORMULATION OF WHEY-SWEET ORANGE BASED READY-TO-SERVE FRUIT BEVERAGE ABSTRACT

ORGANOLEPTIC EVALUATION OF RECIPES BASED ON DIFFERENT VARIETIES OF MAIZE

STUDIES ON UTILIZATION OF BHENDI (ABELMOSCHUS ESCULANTA) GUM AS STABILIZER IN PANEER MAKING

INTRODUCTION probiotics Fermentation

ASSESSMENT OF NUTRIENT CONTENT IN SELECTED DAIRY PRODUCTS FOR COMPLIANCE WITH THE NUTRIENT CONTENT CLAIMS

Evaluation of quality characteristics of composite cake prepared from mixed jackfruit seed flour and wheat flour

2015 Dairy Foods CDE Exam 4-H and Jr Consumer Division

P. Rajendran 1 *, R. Bharathidasan 2

UTILIZATION OF DRIED OKARA AS A FLOUR MIXTURE OF BREAD-MAKING

Int.J.Curr.Microbiol.App.Sci (2017) 6(11):

Name: Date: Milk Products & Eggs Course 2060

Studies on Fortification of Solar Dried Fruit bars

The miraculous power of Bulgarian yogurt. Created by LB BULGARICUM

DEVELOPMENT AND SENSORY EVALUATION OF READY-TO- COOK IDLI MIX FROM BROWNTOP MILLET (Panicum ramosa)

March The newborn calf 3/14/2016. Risks and Benefits of Milk vs. Milk Replacers for. Low milk prices???? Incentive to lower SCC?

Dairy foods provide many valuable nutrients. Dairy foods come in a variety of flavors and forms. They are an important part of a healthful diet.

Volume NaOH ph ph/ Vol (ml)

INFLUENCE OF ADDITION OF GUAVA PULP AND SUGAR ON SENSORY QUALITY OF GUAVA YOGHURT

Protein Fortification of Mango and Banana Bar using Roasted Bengal Gram Flour and Skim Milk Powder

OPTIMIZATION OF CARROT ENRICHED PROBIOTIC SHRIKHAND Mahesh Patil 1, Manjunatha H 2 and Ramachandra B 3

Characteristic evaluation of soy-groundnut paneer

Consumer Education VCO Processing Methods (Dry & Wet Methods)

2. Materials and methods. 1. Introduction. Abstract

Pakistan Journal of Life and Social Sciences

NOVEL NON-DAIRY YOGHURT FROM PIGEON PEA MILK

Studies on Acceptability, Chemical Composition and Cost Structure of Kheer Prepared from Cow Milk Blended with Coconut Milk

Development and Quality Evaluation of Value Added Food Products using Dehydrated Black Kokum (Garcinia indica)

Evaluation of quality characteristics of soy based millet biscuits

EFFECT OF STERILITY (F 0 ) VALUE AT DIFFERENT CANNING TEMPERATURES ON THE PHYSICAL PROPERTIES OF CANNED GUDEG

Utilization of Whey to Increase Properties and Sensory Attributes of Rice

SENSORY ATTRIBUTES OF CEREAL AND PULSE BASED TEMPEH CHIPS

IJERTV3IS International Journal of Engineering Research & Technology (IJERT) ISSN: Vol. 3 Issue 4, April

Tofu is a high protein food made from soybeans that are usually sold as a block of

Milk and Dairy Food Lecture

International Journal of Nutritional Science and Food Technology

The Effect of Various Protein Sources On the Quality of Chocolate Chip Muffins

Effects of Acai Berry on Oatmeal Cookies

Pressurized Yoghurt as a Carrier of Probiotic Bacteria

Preliminary Studies on the Preservation of Longan Fruit in Sugar Syrup

Supplementation of Beverages, Salad Dressing and Yogurt with Pulse Ingredients. Summary of Report

Research & Reviews: Journal of Food and Dairy Technology

Product Catalogue. Experience, Technology, Products

Paper 6 Food Biotechnology F06FB24 Fermented Milk Products Curd (Indian Dahi), Buttermilk and Cheese

CONTEMPORARY RESEARCH IN INDIA (ISSN ): VOL. 7: ISSUE: 2 (2017)

DEVELOPMENT AND EVALUATION OF VALUE ADDED GUAVA (PSIDIUM GUAJAVA L.) NECTAR AND ITS NUTRITIONAL QUALITY

F&N 453 Project Written Report. TITLE: Effect of wheat germ substituted for 10%, 20%, and 30% of all purpose flour by

Effect of benzoate, sorbate and citric acid on the storage stability of strawberry juice

YOUNG CHEDDAR CHEESE GDT Young (for processing)

GELATIN in dairy products

FROZEN CHEDDAR CHEESE

1. Milk that has been heat treated to kill disease-causing organisms is called a. certified. b. homogenized. c. pasteurized. d. fortified.

Suitability of reef cod (Epinephelus diacanthus) minced meat for the preparation of ready to serve product

Studies regarding the obtaining and sensory analysis of gluten-free muffins with buckwheat flour addition

1. Identify environmental conditions (temperature) and nutritional factors (i.e. sugar and fat) that encourages the growth of bacteria.

Effect of Sucralose and Maltitol on the Physicochemical Properties of Dietetic Frozen Bifido Yoghurt

Milk and Dairy Facts

Evaluation of Quality of Chapaties Enriched with Jackfruit Seed Flour and Bengal Gram Flour

EFFECT OF DIFFERENT EXTRACTIONS OF JUICE ON QUALITY AND ACCEPTABILITY OF GUAVA JELLY

SALTED CREAMERY BUTTER GDT Specification - Fonterra NZ

Production, Optimization and Characterization of Wine from Pineapple (Ananas comosus Linn.)

BENEFITS OF DANISCO KEFIR CULTURES

UTILIZATION OF SUNFLOWER AND SESAME SEEDS IN TAHINA AND HALAWA PROCESSING. A Thesis. Presented to Graduate School

Transcription:

Development and Quality Evaluation of Yoghurt Fortified with Pineapple, Apple and Sweet Lemon Juice (Fruit Yoghurt) Ritu Gangwar, 1 Hafsa Abdul Hai, 2 Prashant Kumar, 2 Naveen Kumar Sharma 3 Department of Biotechnology, Saroj Institute of Technology and Management, Lucknow, Uttar Pradesh Abstract - Yoghurt or dahi is consumed worldwide for its nutritional and health benefits. The research was conducted to prepare yoghurt incorporating different fruit s and also to evaluate their quality characteristics. For this purpose, plain yoghurt and fruit yoghurts were prepared from whole milk of buffalo by adding different levels of fruit (5%, 1% and 15%) of different fruits (pineapple, apple and sweet lemon) except plain one in which fruit was not added and inoculating with strain of lactic acid bacteria (LAB). Quality of yoghurt samples were analyzed with the help of physical (smell and taste, body and consistency, color and texture) and chemical (moisture, total solids, ash, protein, fat and carbohydrate content and ph) characteristics. Yoghurts fortified with 5% and 1% pineapple and apple were good in smell and taste; 1% apple yoghurt being the best among all fruit yoghurts. Yoghurts with 5% pineapple and 5% and 1% apple were good in body and consistency; 5% apple yoghurt being the best among all fruit yoghurts. Yoghurts with 5% and 1% pineapple, 5% apple and 5% and 1% sweet lemon were good in color and texture; 1% pineapple yoghurt being the best among all fruit yoghurts. Thus, yoghurts fortified with 5% and 1% pineapple and apple were good in overall physical characteristics; 5% apple yoghurt being the best among all fruit yoghurts. Moisture content was increased in 1% pineapple and at all concentrations of apple and sweet lemon yoghurts than % fruit or plain yoghurt, while decreased in 5% and 15% pineapple yoghurts. Total solids content was increased in 5% and 15% pineapple yoghurts than plain yoghurt, while decreased in 1% pineapple and at all concentrations of apple and sweet lemon yoghurts. Ash content was decreased at all concentrations of all fruit (pineapple, apple and sweet lemon) yoghurts than plain yoghurt. Protein content was decreased at all concentrations of all fruit yoghurts than plain yoghurt. Fat content was decreased at all concentrations of all fruit yoghurts than plain yoghurt. Carbohydrate content was increased in 5% and 15% pineapple and at all concentrations of sweet lemon yoghurts than plain yoghurt, while decreased in 1% pineapple and at all concentrations of apple yoghurts. ph was decreased at all concentrations of all fruit yoghurts than plain yoghurt. This formulation and quality findings will be helpful to set up fruit yoghurt industry. Keywords: Yoghurt, Dahi, Pineapple, Apple, Sweet lemon, Fruit s, LAB, Quality INTRODUCTION The milk and milk products are important food items for people of all ages. Together with milk, fermented milk products are occupying a greater portion of daily food menu of a modern civilized nation, certainly due to their great food value and palatability. Fermentation has been an ideal technology to preserve milk from time immemorial. Of all, cultured milk products, the yoghurts are well known and most popular worldwide (Mansour et al., 1994). It is a nutritiously balanced food containing almost all the nutrients present in milk but in a more assimilable form. Worldwide, cow's milk is most commonly used to make yogurt, but milk from buffalo, goats, ewes, mares, camels, and yaks is also used in various parts of the world. In India, it is most often made from cow or buffalo milk with the buffalo milk version being the fattier of the two. It can be made from different types of milk, including skimmed, semi-skimmed, whole, evaporated or powdered forms. Fermentation of milk by specific microflora accompying a technological modification and using some additives induces change in taste, texture, visual appearance, color, flavor and the nutritive properties of milk and produces a wide variety of foods (Oberman & Libudzisz, 1998). Yoghurt is generally considered as a safer product and its unique flavor appeals to so many that consideration is being given by nutritionists to incorporate inexpensive source of nutrients to make it an almost complete food (Boghra & Mathur, 2). Human consumption of yoghurt has been associated with tremendous health benefits due to improvement of gastrointestinal functions and disease risk reduction (Heyman, 2). Like milk, yoghurt is a healthy and delicious food due to its high nutritive and therapeutic value (Perdigon et al., 22). Due to low lactose content it is easily digestible and palatable than milk. It is valued for controlling the growth of bacteria and in curing of 621

intestinal diseases like constipation, diarrhea and dysentery, anti-carcinogenic effect and lowering blood cholesterol (Kamruzzaman et al., 22). Dahi or yoghurt is a custard like semi solid, acidified dairy product made by fermenting partially evaporated milk with a special culture containing lactic acid producing bacteria (Munzur et al., 24). The bacteria used to make yogurt are known as "yogurt cultures". It is obtained by lactic acid fermentation of milk through the action of a starter culture containing Streptococcus thermophilus and Lactobacillus bulgaricus (Adolfsson et al., 24). Fermentation of lactose by these bacteria produces lactic acid, which acts on milk protein that coagulate and set to give yogurt its texture and its characteristic tang. A colourless liquid called acetaldehyde is also produced during fermentation and gives yogurt its distinct flavour. Flavor, texture, and aroma of yoghurt or dahi depend upon the country origin as well as other factors including raw materials quality, manufacturing processes and the strains involved (Kumar & Mishra, 24). Preparation of fruit yoghurt has been investigated by a number of researchers in different parts of world. But, in India no research work has yet been done on the manufacture of yoghurt incorporating pineapple, apple and sweet lemon s. Hence in the present study, an attempt was made to develop a suitable technology for the production of fruit made yoghurt from whole milk fortified with different levels of pineapple, apple and sweet lemon s and to compare their qualities on the basis of physical, chemical and microbiological parameters. MATERIALS AND METHODS 1. Collection of materials Fresh whole milk of buffalo was collected from the dairy farm at Indira nagar, Lucknow. Fruit s of pineapple, apple & sweet lemon, sugar and starter culture were collected from the local market of Lucknow. 2. Preparation of plain yoghurt (control) and fruit (pineapple, apple and sweet lemon ) yoghurt Whole milk was heated in a pre-washed pan on the heater to reduce about one-third of its original volume. Sugar was added to the milk at the rate of 12% after boiling. During heating milk was stirred continuously with the help of a stirrer to avoid formation of cream layer. After desired heating, milk pan was taken out from the heater and allowed to cool. When the temperature was about 4 C, then milk was divided into four equal portions in the plastic cups and a different type of yoghurt was prepared from each portion. The plastic cups were pre-washed with boiled water before use. The fruit (pineapple, apple and sweet lemon) was incorporated into yoghurt at 1, 2 and 3% level in different cups except control (Nahar et al., 27). Juice was added before incubation with starter culture (Guven and Karaca, 22). Milk was inoculated with desirable proportion of starter culture (2%). The samples were incubated at 37 C until the complete curd formation/coagulation of yoghurt (8-12 h). The yoghurt samples were stored at about 4 C at refrigeration until used. 3. Physical tests of fruit yoghurt After complete curd formation, the yoghurt samples were judged separately by a team of 15 experienced judges for organoleptic parameters including smell and taste, body and consistency, color and texture and data were analysed statistically (Hossain et al., 211). A score card of total 2 points was used having maximum 1 points for smell and taste, 6 points for body and consistency and 4 points for color and texture. Plain yoghurt (no fruit added) was compared with yoghurts incorporating different concentrations (1, 2 and 3%) of pineapple, apple and sweet lemon s for average smell and taste, body and consistency and color and flavor by a team of judges. 4. Chemical analysis of fresh milk and fruit yoghurt Chemical characteristics of yoghurt samples were also analyzed as these are important indicators of quality measures of prepared fruit yoghurt. Moisture, total solids and ash content were determined (AOAC, 1999). Protein content was measured by Formol titration method (Pearson, 1976). Fat content was measured by Gerber s method (Pearson, 1976). Total carbohydrate content was determined by subtracting the measured protein, fat, ash and moisture from 1 (Lopez et al., 1998; Begum et al., 211). Acidity was determined by titration with.1 N sodium hydroxide solution (Aggarwal and Sharma, 1961). PH was measured with the help of a ph strip. RESULTS AND DISCUSSION 1. Qualitative analysis of the physical characteristics Plain yoghurt (PL) in which no fruit was added and yoghurts incorporating different concentrations (5, 1 and 15%) of pineapple (P 1, P 2 and P 3), apple (A 1, A 2 and A 3), and sweet lemon (S 1, S 2 and S 3) were evaluated for organoleptic characteristics (average smell and taste, body and consistency, and color and flavor) by a team of 15 judges. A score card of total 2 points for physical characteristics was used having maximum 1 points for smell and taste, 6 points for body and consistency and 4 points for color and texture. 1.1. Comparison of physical characteristics of plain yoghurt and fruit yoghurts All yoghurt samples were given total points out of 2 for overall physical characteristics by adding their average points out of 1, 6, and 4 for smell and taste, body and consistency, and color and flavor respectively. Results obtained are shown in table 1.1. 622

TABLE 1.1: Total scores (out of 2) for physical characteristics of plain yoghurt and different. fruit yoghurts. Physical PL P 1 P 2 P 3 A 1 A 2 A 3 S 1 S 2 S 3 characteristics Smell and taste 8.6 8.3 8.9 7.5 8.5 9.4 7.8 7.7 6.9 6.1 Body and 5.2 4.9 4.1 3.4 5.4 4.6 3.9 4. 3.5 2.9 consistency Color and 3.5 3.2 3.7 2.8 3.1 2.3 1.5 3. 3.4 2.5 texture Total score 17.3 16.4 16.7 13.7 17. 16.3 13.2 14.7 13.8 11.5 PL= Plain yoghurt with % fruit. P 1, P 2 and P 3= Pineapple yoghurt with 5, 1 and 15% concentrations respectively. A 1, A 2 and A 3= Apple yoghurt with 5, 1 and 15% concentrations respectively. S 1, S 2 and S 3= Sweet lemon yoghurt with 5, 1 and 15% concentrations respectively. Highest total score (17.3) for overall physical characteristics was seen in case of yoghurt with % fruit or plain yoghurt (PL), on the other hand, lowest total score (11.5) was recorded in case of yoghurt with 15% sweet lemon (S 3), as shown in figure 4.4. However yoghurts with 5% pineapple (P 1) having total score of 16.4, 1% pineapple (P 2) having total score of 16.7, 5% apple (A 1) having total score of 17. and 1% apple (A 2) having total score of 16.3 were also equally acceptable. 1.2. Smell and taste analysis All yoghurt samples were analysed by a team of 15 judges and points were given out of 1 for smell and taste. Highest average score (9.4) for smell and taste was seen in case of yoghurt with 1% apple (A 2), on the other hand, lowest average score (6.1) was recorded in case of yoghurt with 15% sweet lemon (S 3), as shown in figure 1.2. However, yoghurt with % fruit or plain yoghurt (PL) having average score of 8.6 and yoghurts with 5% pineapple (P 1) having average score of 8.3, 1% pineapple (P 2) having average score of 8.9 and 5% apple (A 1) having average score of 8.5 were also equally acceptable. FIGURE 1.2: Average scores (out of 1) for smell and taste of plain yoghurt and different fruit yoghurts. 1.3. Body and consistency analysis All yoghurt samples were analyzed by a team of 15 judges and points were given out of 6 for body and consistency. Highest average score (5.4) for body and consistency was seen in case of yoghurt with 5% apple (A 1), on the other hand, lowest average score (2.9) was recorded in case 623

of yoghurt with 15% sweet lemon (S 3), as shown in figure 1.3. However, yoghurt with % fruit or plain yoghurt (PL) having average score of 5.2, yoghurts with 5% pineapple (P 1) having average score of 4.9 and 1% apple (A 2) having average score of 4.6 were also equally acceptable. FIGURE 1.3: Average scores (out of 6) for body and consistency of plain yoghurt and different fruit yoghurts. 1.4. Color and texture analysis All yoghurt samples were analysed by a team of 15 judges and points were given out of 4 for color and texture. Highest average score (3.7) for color and texture was seen in case of yoghurt with 1% pineapple (P 2), on the other hand, lowest average score (1.5) was recorded in case of yoghurt with 15% apple (A 3), as shown in figure 1.4. However, yoghurt with % fruit or plain yoghurt (PL) having average score of 3.5 and yoghurts with 5% pineapple (P 1) having average score of 3.2, 5% apple (A 1) having average score of 3.1, 5% sweet lemon (S 1) having average score of 3. and 1% sweet lemon (S 2) having average score of 3.4 were also equally acceptable. FIGURE 1.4: Average scores (out of 4) for color and texture of plain yoghurt and different fruit yoghurts. Average score 4 3.5 3 2.5 2 1.5 1.5 Color and texture Pineapple Apple Sweet lemon % Fruit 5% Fruit 1% Fruit 15% Fruit 624

2. Qualitative analysis of the chemical characteristics Chemical characteristics (moisture content, total solids content, ash content, protein content, fat content, carbohydrate content and ph) of the plain yoghurt and fruit yoghurts were determined and analysed. 2.1. Comparison of chemical characteristics of plain yoghurt and fruit yoghurts All the chemical characteristics (moisture content, total solids content, ash content, protein content, fat content, carbohydrate content and ph) were evaluated and compared. Results obtained for all yoghurt samples are shown in table 4.12. TABLE 2.1: Chemical characteristics of plain yoghurt and different fruit yoghurts. Chemical PL P 1 P 2 P 3 A 1 A 2 A 3 S 1 S 2 S 3 characteristics M.C.(%) 74.3 73.43 75.2 72.57 74.87 76.3 78.4 74.6 75.17 76.7 T.S.(%) 25.7 26.57 24.8 27.43 25.13 23.97 21.6 25.4 24.83 23.93 A.C.(%).73.71.69.67.68.65.63.7.67.66 P.C.(%) 3.52 2.94 3.28 3.1 3.45 3.18 3.11 3.1 2.84 2.77 F.C.(%) 4.61 4.6 4.21 3.95 4.36 4.29 4.13 4.2 3.88 3.64 C.C.(%) 16.84 18.56 16.62 19.8 16.64 14.87 13.73 17.67 17.44 16.86 ph 6.2 5.8 5.5 5.3 5.9 5.7 5.4 5.6 4.9 4.1 PL= Plain yoghurt with % fruit. P 1, P 2 and P 3= Pineapple yoghurt with 5, 1 and 15% concentrations respectively. A 1, A 2 and A 3= Apple yoghurt with 5, 1 and 15% concentrations respectively. S 1, S 2 and S 3= Sweet lemon yoghurt with 5, 1 and 15% concentrations respectively. M.C.= Moisture content. T.S.= Total solids content. A.C.= Ash content. P.C.= Protein content. F.C.= Fat content. C.C.= Carbohydrate content. 2.2. Moisture content determination Moisture content was measured using formula, M.C. (%) = (Y 1 Y 2) x 1 Y 1 where, Y 1 and Y 2 = Weight of yoghurt sample before drying and after drying respectively. M.C. = Moisture content. Highest moisture content (78.4%) was seen in case of yoghurt with 15% apple (A 3), on the other hand, lowest moisture ((72.57%) was recorded in case of yoghurt FIGURE 2.2: Moisture content of plain yoghurt and different fruit yoghurts. with 15% pineapple (P 3), as shown in figure 2.2. Moisture content was increased in 1% pineapple and at all concentrations (5%, 1% and 15%) of apple and sweet lemon yoghurts (P 2, A 1, A 2, A 3, S 1, S 2 and S 3) than % fruit or plain yoghurt (PL), while decreased in 5% and 15% pineapple yoghurts (P 1 and P 3). 625

2.3. Total solids content determination Total solids content was measured using formula, T.S. (%) = (D + Y 2) D x 1 Y 1 where, D = Weight of dish. Y 1 and Y 2 = Weight of yoghurt sample before drying and after drying respectively. T.S. = Total solids content. Highest total solids content (27.43%) was seen in case of yoghurt with 15% pineapple (P 3), on the other hand, lowest total solids (21.6%) was recorded in case of yoghurt with 15% apple (A 3), as shown in figure 2.3. Total solids content was increased in 5% and 15% pineapple yoghurts (P 1 and P 3) than % fruit or plain yoghurt (PL), while decreased in 1% pineapple and at all concentrations (5%, 1% and 15%) of apple and sweet lemon yoghurts (P 2, A 1, A 2, A 3, S 1, S 2 and S 3). FIGURE 2.3: Total solids content of plain yoghurt and different fruit yoghurts. T.S. (%) 3 25 2 15 1 5 Total solids (T.S.) % Fruit 5% Fruit 1% Fruit 15% Fruit Pineapple Apple Sweet lemon 2.4. Ash content determination Ash content was measured using formula, A.C. (%) = A x 1 Y where, A = Weight of ash. Y = Weight of yoghurt sample. A.C. = Ash content. Highest ash content (.73%) was seen in case of yoghurt with % fruit or plain yoghurt (PL), on the other hand, lowest ash (.63%) was recorded in case of yoghurt with 15% apple (A 3), as shown in figure 2.4. Ash content was decreased at all concentrations (5%, 1% and 15%) of all fruit (pineapple, apple and sweet lemon) yoghurts (P 1, P 2, P 3, A 1, A 2, A 3, S 1, S 2 and S 3) than % fruit or plain yoghurt (PL). FIGURE 2.4: Ash content of plain yoghurt and different fruit yoghurts. A.C. (%).75.7.65.6.55 Pineapple Ash content (A.C.) Apple Sweet lemon % Fruit 5% Fruit 1% Fruit 15% Fruit 626

2.5. Protein content determination Protein content was measured using formula, P.C. (%) = V Avg. x 1.7 where, V Avg. = Average volume of NaOH in second titration. P.C. = Protein content. Highest protein content (3.52%) was seen in case of yoghurt with % fruit or plain yoghurt (PL), on the other hand, lowest protein (2.77%) was recorded in case of yoghurt with 15% sweet lemon (S 3), as shown in figure 2.5. Protein content was decreased at all concentrations (5%, 1% and 15%) of all fruit (pineapple, apple and sweet lemon) yoghurts (P 1, P 2, P 3, A 1, A 2, A 3, S 1, S 2 and S 3) than % fruit or plain yoghurt (PL). FIGURE 2.5: Protein content of plain yoghurt and different fruit yoghurts. P.C. (%) 4 3.5 3 2.5 2 1.5 1.5 Pineapple Protein content (P.C.) Apple Sweet lemon % Fruit 5% Fruit 1% Fruit 15% Fruit 2.6. Fat content determination Fat content was measured using butyrometer. Highest fat content (4.61%) was seen in case of yoghurt with % fruit or plain yoghurt (PL), on the other hand, lowest fat (3.64%) was recorded in case of yoghurt with 15% sweet lemon (S 3), as shown in figure 2.6. Fat content was decreased at all concentrations (5%, 1% and 15%) of all fruit (pineapple, apple and sweet lemon) yoghurts (P 1, P 2, P 3, A 1, A 2, A 3, S 1, S 2 and S 3) than % fruit or plain yoghurt (PL). FIGURE 2.6: Fat content of plain yoghurt and different fruit yoghurts. F.C. (%) 5 4 3 2 1 Pineapple Fat content (F.C.) Apple Sweet lemon % Fruit 5% Fruit 1% Fruit 15% Fruit 2.7. Carbohydrate content determination Carbohydrate content was measured using formula, C.C. (%) = 1 - {M.C. (%) + A.C. (%) + P.C. (%) + F.C. (%)} where, M.C. = Moisture content. A.C. = Ash content. P.C. = Protein content. F.C. = Fat content. C.C. = Carbohydrate content. 627

Highest carbohydrate content (19.8%) was seen in case of yoghurt with 15% pineapple (P 3), on the other hand, lowest carbohydrate (13.73%) was recorded in case of yoghurt with 15% apple (A 3), as shown in figure 2.7. Carbohydrate content was increased in 5% and 15% pineapple and at all concentrations (5%, 1% and 15%) of sweet lemon yoghurts (P 1, P 3, S 1, S 2 and S 3) than % fruit or plain yoghurt (PL), while decreased in 1% pineapple and at all concentrations (5%, 1% and 15%) of apple yoghurts (P 2, A 1, A 2 and A 3). FIGURE 2.7: Carbohydrate content of plain yoghurt and different fruit yoghurts. 25 Carbohydrate content (C.C.) 2 C.C. (% ) 15 1 5 Pineapple Apple Sweet lemon % Fruit 5% Fruit 1% Fruit 15% Fruit 2.8. ph determination Moisture content was measured using ph strips. Highest ph (6.2) was seen in case of yoghurt with % fruit or plain yoghurt (PL), on the other hand, lowest ph (4.1) was recorded in case of yoghurt with 15% sweet lemon (S 3), as shown in figure 2.8. ph was decreased at all concentrations (5%, 1% and 15%) of all fruit (pineapple, apple and sweet lemon) yoghurts (P 1, P 2, P 3, A 1, A 2, A 3, S 1, S 2 and S 3) than % fruit or plain yoghurt (PL). FIGURE 2.8: ph of plain yoghurt and different fruit yoghurts. 628

REFERENCES [1] Mansour, A.A., M.Y. Khalifa and N.M. Hanafy, (1994). Utilization of some dairy by product in yogurt manufacture. Egypt. J. Food Sci., 22: 87-97. [2] Oberman, H. and Libudzisz, Z., (1998). Physiological activity of Str. Diacetilactis and Lb. cazci strains in continuous culture system. Acta Alimentaria polorica. IV 21-15. Microbiology of Fermented Foods. Vol. IEd. Brain. J.B. Wood Blackic Academic and professional, Madras, 38-35. [3] Boghra, V.R. and O.N. Mathur, 2. Physico-chemical status of major milk constituents and minerals at various stages of shrikhand preparation. J. Food Sci. Technol., 37: 111-115. [4] Heyman, M., 2. Effect of lactic acid bacteria on refrigerated strorage. EJEAFChe, 9: 123-1213. diarrheal diseases. J. Am. Coll. Nutr., 19: 137S- USDA. Specifications for Yogurt, Nonfat Yogurt 146S. [5] Perdigon, G., A.M. de LeBlanc, J. Valdez and M. Rachid, 22. Role of yoghurt in the prevention of colon cancer. Eur. J. Clin. Nutr., 56: S65-S68. [6] Kamruzzaman, M., M.N. Islam, M.M. Rahman, S. Parvin and M.F. Rahman, 22. Evaporation rate of moisture from dahi (yogurt) during storage at refrigerated condition. Pak. J. Nutr., 1: 29-211. [7] Munzur, M.M., M.N. Islam, S. Akhter and M.R. Islam, 24. Effect of different levels of vegetable oil for the manufacture of Dahi from skim milk. Asian Aust. J. Anim. Sci., 17: 119-125. [8] Adolfsson, O., S.N. Meydani and R.M. Russel, 24. Yogurt and gut function. Am. J. Clin. Nutr., 8: 245-256. [9] Kumar, P. and H.N. Mishra, 24. Mango fortified set yoghurt: Effect of stabilizer addition of physicochemical, sensory and textural properties. Food Chem., 87: 51-57. [1] Nahar A, Al-Amin M, Alam SMK, Wadud A, Islam MN, 27. A comparative study on the quality of Yoghurt (Yoghurt) prepared from cow, goat and Buffalo Milk. International Journal of Dairy Science. 2: 26-267. [11] Guven M, Karaca OB, 22. The effects of varying sugar content and fruit concentration on the physical properties of vanilla and fruit ice-cream type frozen yogurts. Int J Dairy Tech 55: 27-31. [12] Hossain MN, Fakruddin M, Islam MN, 211. Effect of Chemical Additives on the shelf life of tomato. American J of Food Technology. 6: 914-923. [13] AOAC, 1999. Official Methods of Analysis 16 th Edn., Association of Official Agricultural Chemists. Washington D.C. [14] Lopez, M.C., L.M. Medina and R. Jordano, 1998. Survival of lactic acid bacteria in commercial frozen yogurt. J. Food Sci., 63: 76-78. [15] Begum J, Nahar A, Islam MN, Rahman MM, 211. Qualitative Characteristics of Dahi Prepared from Non-Fat- Dry Milk Fortified with Vegetable Oil. Bangladesh Research Publications Journal. 6(1): 3-45. [16] Aggarwala AC, Sharma RM, 1961. A laboratory Manual of Milk Inspection. 4th edition, Asia Publishing House, New Delhi, India. P: 14. 629