Effect of different calcium compounds on postharvest quality of apples

Similar documents
Relationship between Mineral Nutrition and Postharvest Fruit Disorders of 'Fuerte' Avocados

A new approach to understand and control bitter pit in apple

Is fruit dry matter concentration a useful predictor of Honeycrisp apple fruit quality after storage?

IMPROVING THE PROCEDURE FOR NUTRIENT SAMPLING IN STONE FRUIT TREES

Further refinement of Pinkerton export parameters

NEW ZEALAND AVOCADO FRUIT QUALITY: THE IMPACT OF STORAGE TEMPERATURE AND MATURITY

Avocado sugars key to postharvest shelf life?

Peach and Nectarine Cork Spot: A Review of the 1998 Season

Effects of calcium sprays and AVG on fruit quality at harvest and after storage

EFFECT OF FRUCOL APPLICATION ON SHELF LIVE OF IDARED APPLES

What Went Wrong with Export Avocado Physiology during the 1996 Season?

Tomato Quality Attributes

Calcium Use in Apples: An Update. M. Elena Garcia, PhD

(36) PROHEXADIONE-CALCIUM AFFECTS SHOOT GROWTH AND YIELD OF LEMON, ORANGE AND AVOCADO DIFFERENTLY

EVALUATION OF NEW HASS -LIKE AVOCADO CULTIVARS IN SOUTH AFRICA

Use of a potassium permanganate ethylene absorbent to maintain quality in Golden Delicious apple during ULO cold storage

21/06/2009. Metric Tons (000) '95 '96 '97 '98 '99 '00 '01 '02 '03 '

Effects of Seedling Age, and Different Levels of N, K and K/N on Quality and Yield of Tomato Grown in Perlite Bag Culture

PERFORMANCE OF HYBRID AND SYNTHETIC VARIETIES OF SUNFLOWER GROWN UNDER DIFFERENT LEVELS OF INPUT

Research - Strawberry Nutrition

Relationship between fruit pulp mineral composition and the ripening profiles of South African Hass avocado fruit

D Lemmer and FJ Kruger

Influence of Cultivar and Planting Date on Strawberry Growth and Development in the Low Desert

The effect of modified atmosphere storage on the postharvest quality of the raspberry Polka

CARTHAMUS TINCTORIUS L., THE QUALITY OF SAFFLOWER SEEDS CULTIVATED IN ALBANIA.

Flowering and Fruiting Morphology of Hardy Kiwifruit, Actinidia arguta

Effect of Preharvest Calcium Sprayed on Growth and Fruit Quality of Cherry Tomato cv. Red Lady

ANALYSIS OF CLIMATIC FACTORS IN CONNECTION WITH STRAWBERRY GENERATIVE BUD DEVELOPMENT

COMPARISON OF CORE AND PEEL SAMPLING METHODS FOR DRY MATTER MEASUREMENT IN HASS AVOCADO FRUIT

Regression Models for Saffron Yields in Iran

INFLUENCE OF ENVIRONMENT - Wine evaporation from barrels By Richard M. Blazer, Enologist Sterling Vineyards Calistoga, CA

THE EFFECT OF DIFFERENT APPLICATIONS ON FRUIT YIELD CHARACTERISTICS OF STRAWBERRIES CULTIVATED UNDER VAN ECOLOGICAL CONDITION ABSTRACT

Best Practices for use of SmartFresh on Pear Fruit. Beth Mitcham Department of Plant Sciences University of California Davis

Studies in the Postharvest Handling of California Avocados

Further investigations into the rind lesion problems experienced with the Pinkerton cultivar

THE GROWTH OF THE CHERRY OF ROBUSTA COFFEE

Factors Affecting Sweet Cherry Fruit Pitting Resistance/Susceptibility. Yan Wang Postharvest Physiologist MCAREC, OSU

Relationship between Fruit Color (ripening) and Shelf Life of Cranberries: Physiological and Anatomical Explanation

CHEMICAL THINNING OF APPLE UNDER NORWEGIAN CONDITIONS. WHAT WORKS?

Proceedings of The World Avocado Congress III, 1995 pp

INCREASING PICK TO PACK TIMES INCREASES RIPE ROTS IN 'HASS' AVOCADOS.

THE EFFECT OF NITROGEN AND PHOSPHORUS ON OIL CONTENT OF WINTER RAPE

IMPACT OF RAINFALL PRIOR TO HARVEST ON RIPE FRUIT QUALITY OF HASS AVOCADOS IN NEW ZEALAND

EFFECT OF CURING AND SEAL PACKAGING ON PEEL AND PULP WEIGHT LOSS PERCENTAGE OF SCUFFING DAMAGED AND UNDAMAGED CITRUS FRUIT.

bag handling Poor technology High Technology Bulk handling mechanized

Percentage Fruit Set In Avocados (Persea Americana Mill.)

Quality of western Canadian flaxseed 2012

western Canadian flaxseed 2003

Temperature Regimes for Avocados Grown In Kwazulu-Natal

Quality of Canadian oilseed-type soybeans 2017

INFLUENCE OF LIMING WITH Ca(OH) 2 AND STOCKPILING FERTILIZATION ON THE NITROGEN, PHOSPHORUS AND POTASSIUM CONTENT IN THE GRAPE OF WINE GRAPE VARIETIES

Sweet cherry fruit quality under fertigation

WINE GRAPE TRIAL REPORT

To study the effects of four different levels of fertilizer NPK nutrients, applied at a ratio of N:P 2

IMPACT OF RAINFALL AND TEMPERATURE ON TEA PRODUCTION IN UNDIVIDED SIVASAGAR DISTRICT

2010 Winter Canola Variety Trial

PEEL RIVER HEALTH ASSESSMENT

Acta Chimica and Pharmaceutica Indica

ALTERNATIVES TO SPORTAK

Effect of Inocucor on strawberry plants growth and production

Use of Plant Growth Regulators to Increase Fruit Set, Fruit Size and Yield and to Manipulate Vegetative and Floral Shoot Growth

Non-Structural Carbohydrates in Forage Cultivars Troy Downing Oregon State University

Final Report to Delaware Soybean Board January 11, Delaware Soybean Board

Vibration Damage to Kiwifruits during Road Transportation

2009 Barley and Oat Trials. Dr. Heather Darby Erica Cummings, Rosalie Madden, and Amanda Gervais

The effect of calcium foliar fertilizers on cv. Ligol apples

Irrigation of Sunflowers in Northwestern Kansas

Analysis of trace elements and major components in wine with the Thermo Scientific icap 7400 ICP-OES

DETERMINATION OF MATURITY STANDARDS OF DATES ABSTRACT

Effects of Preharvest Sprays of Maleic Hydrazide on Sugar Beets

Analysis of C-Organic, Nitrogen, Phosphorus and Potassium in Application Areas and Without Application of Palm Oil Mill Effluent

PROCESSING TOMATO VARIETY TRIAL SUMMARY

Low temperature shipping and cold chain management of Fuerte avocados: An opportunity to reduce shipping costs

RMUTP Research Journal Special Issue

Lack of irrigation in 2002 reduced Riesling crop in Timothy E. Martinson Finger Lakes Grape Program

Silage Corn Variety Trial in Central Arizona

STORAGE SCALD OF APPLES

Vivekanandan, K. and G. D. Bandara. Forest Department, Rajamalwatta Road, Battaramulla, Sri Lanka.

Health Effects due to the Reduction of Benzene Emission in Japan

Using Growing Degree Hours Accumulated Thirty Days after Bloom to Help Growers Predict Difficult Fruit Sizing Years

Lecture 4. Factors affecting ripening can be physiological, physical, or biotic. Fruit maturity. Temperature.

Evaluation of 15 Specialty Pepper Cultivars In Southwest Michigan

Project Title: Testing biomarker-based tools for scald risk assessment during storage. PI: David Rudell Co-PI (2): James Mattheis

SUNFLOWER HYBRIDS ADAPTED TO THE FINNISH GROWING CONDITIONS

Project Title: Effectiveness of foliar calcium applications in bitter pit management PI: Lee Kalcsits CO-PI: Lav Khot

IMPACT OF OVERSEEDING COOL-SEASON ANNUAL FORAGES ON SPRING REGROWTH OF TIFTON 85 BERMUDAGRASS 1. Abstract

Use of Plant Growth Regulators for Improving Lemon Fruit Size

THE INFLUENCE OF MODIFIED ATMOSPHERE STORAGE ON THE QUALITY OF FUERTE AVOCADO FRUIT

Harvesting and Postharvest Harvesting and Postharvest Handling of Dates Handling of Dates

THE INFLUENCE OF WET PICKING ON POST HARVEST DISEASES AND DISORDERS OF AVOCADO FRUIT

2013 NEW YORK STATE SOYBEAN VARIETY YIELD TESTS. William J. Cox, Phil Atkins, and Mike Davis Dep. of Crop and Soil Sciences

Improvement of yield and fruit quality of neglected mango orchards in Yen Chau, Son La. Pham Thi Huong Hanoi University of Agriculture

NAME OF CONTRIBUTOR(S) AND THEIR AGENCY:

The Post-harvest Management of Apples, from Hot Water Treatment to Decision Support System.

Determination of Metals in Wort and Beer Samples using the Agilent 5110 ICP-OES

Evaluation of 17 Specialty Pepper Cultivars in Southwest Michigan

1. Title: Identification of High Yielding, Root Rot Tolerant Sweet Corn Hybrids

Improving Efficacy of GA 3 to Increase Fruit Set and Yield of Clementine Mandarins in California

Achieving larger Ettinger fruit by foliar application of Plant Growth Regulators (PGRs)

Areas of Concern Extreme Weather events

Transcription:

Agronomy Research 4(2), 543 548, 2006 Effect of different calcium compounds on postharvest quality of apples U. Moor, M. Toome and A. Luik Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi St. 64, EE51014 Tartu, Estonia, e-mail: ulvimoor@emu.ee Abstract. The research was conducted with apple (Malus domestica Borkh.) cultivars Antei and Talvenauding in the Rõhu Research Centre and the Estonian University of Life Sciences in 2005 2006. The aim of the study was to determine the influence of different Ca compounds (CaCl 2, Ca(NO 3 ) 2 and Boramin Ca) used as preharvest sprays on the mineral content of apple leaves and fruits and apple postharvest quality. Apples were stored in normal atmosphere at 2 5ºC and 80 85% RH. The time for Talvenauding was 5 months and for Antei 6 months. The percentage of spoiled apples was calculated monthly. The content of Ca, N, P, K and Mg from apple leaves was determined at the end of August and from fruits after the harvest. The average effect of calcium treatment was significant only in the variant where Ca (NO 3 ) 2 + CaCl 2 were used: the percentage of spoiled fruits was 25% compared to 39% in the control variant. Correlation analysis showed that the amount of spoiled fruits in January and at the end of had negative correlations with content of Ca in leaves and content of Mg in fruits. At the same time positive correlations were found between N-, P-, K- and Ca content of fruits and spoilage. Only the increasing fruit Mg had a positive effect on apple fruit quality in the present experiment. The content of mineral elements in leaves had no positive correlation with the content of mineral elements in fruits. Key words: preharvest calcium treatments,, spoilage, Antei, Talvenauding INTRODUCTION The majority of fruit orchards in Estonia are apple orchards. Even though approximately 25 apple cultivars are grown in our orchards, very few have satisfactory quality after four months of. After January most apples sold in Estonian markets are imported. Talvenauding is one of the most widely cultivated cultivars for long-term in Estonia, having many valuable properties: good winter-hardiness and relatively high vitamin C (18 25 mg 100g -1 FW) content in fruits. Antei is a relatively new but promising cultivar originating from Byelorussia. It has an attractive appearance, also a high content of vitamin C (30 35 mg 100g -1 FW) (Moor, unpublished data) in fruits and a natural wax layer on the skin, which protects the apple from shrivelling. In spite of those valuable qualities, these cultivars also have some severe postharvest problems: superficial scald in Talvenauding and bitter pit in Antei. In many parts of the world, calcium sprays are used as a routine protective measure, in order to prevent or reduce bitter bit of apples (Saure, 2002). The previous research carried out in Estonia has shown that superficial scald disorder in 543

Talvenauding is related to mineral nutrition and that fruit content of Ca and its ratios with K, N and Mg play an important role in the severity of scald (Moor et al., 2006). Previous studies showed that if Ca (NO 3 ) 2 was used as Ca source, fruit Ca content did not increase significantly, but fruit N content increased. This is not a favourable result, since it could increase the respiration rate and ethylene production. Also, some studies indicate that application of boron may influence fruit Ca content (Benavides et al., 2002). Therefore, the aim of the present study was to determine the influence of different Ca compounds (with and without nitrogen and boron) on the mineral content of apple leaves and the fruits postharvest quality. MATERIALS AND METHODS The experiment was conducted from June 2005 March 2006. Apple trees Antei and Talvenauding were grown in Rõhu Research Centre, which is situated in Tartu County, Southern Estonia. The plantation was 18 years old; rejuvenation was carried out in 1999 and routine thinning has been carried out every year. Apple trees were planted with a distance of 6 m between rows and 4 m within the row. No irrigation system was used in plantation and Antonovka was used as seedling rootstock for both cultivars. The number of trees per variant for Talvenauding was 21 trees (seven trees in three replications); for Antei it was 9 trees (three trees in three replications). Calcium treatments were the following: 1) control (non-treated); 2) Ca(NO 3 ) 2 + CaCl 2: in this variant Ca(NO 3 ) 2 1% solution was applied on 1 July and 15 July in the amount of 1000 L ha -1 and CaCl 2 0.5% solution was applied on 29 July and 12 August in the same amount; total amount of applied Ca during the summer was 4.9 kg ha -1. 3) CaCl 2 : only CaCl 2 0.5% solution was applied on all previously mentioned dates and at the same amount; total amount of applied Ca during the summer was 2.22 kg ha -1. 4) Boramin Ca: only Boramin Ca 0.4% solution was applied on all the previously mentioned dates in the amount of 1000 L ha -1. Total amount of applied Ca during the summer was 0.928 kg ha -1. Apples were harvested in the last week of September. The samples of 90 fruits per variant (thirty fruits in three replications) were collected. Apple fruits were stored in the coolstore of the Raja experimental garden of the Estonian University of Life Sciences at normal atmosphere in 2 5ºC and 80 85% RH. Fruits were set as one layer in air-permeable plastic boxes. The period for Talvenauding was 5 months and for Antei 6 months. Spoiled apples were removed monthly. The content of Ca, N, P, K and Mg from apple leaves was measured twice: at the end of August and at the end of September, after the harvest. The content of mineral elements was analysed in the Laboratory of Plant Biochemistry of the Estonian University of Life Sciences. The N concentration of air-dried samples was determined by the Kjeldahl method. P and Mg concentrations were measured from a Kjeldahl digest using the flow injection analyzer "FIAstar 5000", K concentration was determined flamephotometrically by an air-acetylene flame. P was determined at a wavelength of 720 nm by the Stannous Chloride method. Mg was determined by the Titan Yellow at a wavelength of 540 nm. Fruit Ca was 544

determined by an induction couplet plasma spectrometer. All nutrient concentrations were expressed as mg kg -1 fresh weight (FW). Weather conditions in summer 2005 could be described as follows: May 2005 was rainy, in fact precipitation rate was double the annual May average for in Estonia; the air temperature was average. In June air temperature and precipitation were somewhat lower than average. July, especially the first part, was exceptionally warm, dry and sunny: the average air temperature was about three degrees higher than average, with only 30% of normal precipitation. August and September were both warmer than average; precipitation was above average in August and below average in September. The experimental data were analysed by the two-way analysis of variance and correlation analysis. Linear correlation coefficients between variables were calculated, the significance of coefficients being P < 0.01**, P < 0.05*, ns = non-significant. RESULTS AND DISCUSSION The percentage of spoiled fruits at the end of ranged from 39 to 67% for Talvenauding and from 11 to 27% for Antei (Fig.1). The average effect of the cultivar was significant: the percentage of spoiled fruits in Antei was less than half that in Talvenauding. The average effect of calcium treatment was significant only in the variant where Ca(NO 3 ) 2 + CaCl 2 was used: the percentage of spoiled fruits was 25% compared to 39% in control variant. On average, other Ca compounds did not reduce apple spoilage significantly this year. In different variants, none of the Ca compounds had a significant effect on spoilage. Spoiled fruits, % 85 65 45 25 5 52 67 39 49 25 22 11 27 52 21 39 44 25 38 control CaCl2 CaCl2+Ca(NO3)2 Boramin Ca control CaCl2 CaCl2+Ca(NO3)2 Boramin Ca Talvenauding Antei Talvenauding Antei Average effect of cultivar control CaCl2 CaCl2+Ca(NO3)2 Boramin Ca Average effect of Ca treatment Fig. 1. The percentage of spoiled fruits at the end of depending on different preharvest calcium treatments. The mean values to be compared are surrounded with a box ( )if they are significantly different at P 0.05. 545

Correlation analysis showed that the amount of spoiled fruits in January and at the end of had negative correlations with the content of Ca in leaves and content of Mg in fruits (Table 1). Table 1. Correlation coefficients (r) between the mineral content of apple leaves and fruits and the percentage of spoiled fruits after four months of and at the end of. The asterisks (*) indicate the significance levels of F-tests: * P 0.05, **P 0.01, ns = not significant. Mineral content of leaves, g kg -1 DM Ca N P K Mg Percentage of spoiled -0.393* -0.162 ns -0.027 ns 0.161 ns 0.173 ns fruits after 4 months of Percentage of spoiled fruits at the end of -0.503** -0.429* 0.025 ns 0.117 ns 0.260 ns Mineral content of fruits, mg kg -1 FW Percentage of spoiled fruits after 4 months of Percentage of spoiled fruits at the end of Ca N P K Mg 0.562** 0.524** 0.498** 0.411* -0.392* 0.653** 0.625** 0.714** 0.616** -0.528** At the end of negative correlations were also found between N content in leaves and the amount of spoiled fruits, but positive correlations were found between N-, P-, K- and Ca content of fruits and spoilage. The strongest correlation appeared between fruit P content and spoilage at the end of (r = 0,714**). Based on these results it can be concluded that only the increasing fruit Mg had a positive effect on the apple fruit quality in the present experiment. Considering the results of the present research and also previous studies in Estonia, it appears that the effect of Ca treatment is greatly dependent on the weather conditions and is often useless or has adverse effects in years with low precipitation and high air temperature. Experiments have shown that the warm vegetation period and drought problem during the growing season favour the development of physiological disorders in apples (Lamp, 1981; Dris et al., 1998; Lanauskas & Kvikliene, 2006). In a preharvest Ca treatment experiment carried out in Estonia in 2002, Ca content of Talvenauding and Krameri Tuviõun apples did not reach the level of 50 mg kg -1 FW recommended by Sharples (1980). Calcium treatment also had no significant effect on the percentage of spoiled apples (Moor et al., 2006). Experiments carried out in Lithuania showed similar results: apple Ca content was influenced by the year, being the lowest after an extremely dry and warm growth season in 2002 (Lanauskas & Kvikliene, 2006). However, in most parts of the world preharvest Ca treatment is generally effective in increasing fruit Ca and reducing spoilage (Benavides et al., 2001; Neilsen & Neilsen, 2002; Kadir, 2004), possibly because most apple orchards in Europe are drip-irrigated, a method not used in older orchards in Estonia and Latvia. 546

In the present research, the Ca content of Antei fruits ranged from 23 67 and Talvenauding fruits from 51 98 mg kg -1 FW (data not shown), indicating that the recommended level was achieved. Even though the amount of applied Ca was quite different in variants, fruit Ca content was sufficient in most of them. Despite that, fruit spoilage was not reduced. Some other factors could be also very important in determining apple postharvest quality, one being fruit content of Mg. It seems that especially in years with low precipitation, the Mg content of fruit has more often a negative correlation with fruit spoilage than with Ca content of fruit (Moor et al., 2006); (Table 1). Retamales et al., (2000), also stated that the fruit Mg infiltration would provide a more reliable forecast of fruit spoilage than Ca. In the present experiment, fruit Mg of Antei ranged from 42 51 and fruit Mg of Talvenauding from 34 42 mg kg -1 FW, which is below the sufficient content and could influence the spoilage of fruits. Two conclusions can be made from the current research: 1) in dry summers, drip irrigation should be used in orchards to improve apple quality by Ca fertilization; 2) more consideration of adequate Mg content of fruit must be given in order to improve apple postharvest quality. ACKNOWLEDGEMENTS. Authors are grateful to the Estonian Ministry of Agriculture, to the ESF (grant 5082) for financial support and also to the Rõhu Research Centre for their help. REFERENCES Benavides, A., Recasens, I., Casero, T. & Puy, J. 2001. Chemometric analyses of Golden Smoothee apples treated with two preharvest calcium spray strategies in the growing season. Journal of the Science of Food and Agriculture 8, 943 952. Benavides, A., Recasens, I., Casero, T., Soria, Y. & Puy, J. 2002. Multivariate analysis of Quality and mineral parameters on Golden Smoothee apples treated before harvest with calcium and stored in controlled atmosphere. Food Science and Technology Internationa, 8(3), 139 146. Dris, R., Niskanen, R. & Fallahi, E. 1998. Nitrogen and Calcium nutrition and fruit quality of commercial apple cultivars grown in Finland. Journal of Plant Nutrition, 21(11), 2389 2402. Kadir, S.A. 2004. Fruit quality at harvest of Jonathan apple treated with foliarly-applied calcium chloride. Journal of Plant Nutrition 27, 1991 2006. Lamp, L. 1981. Storage response of apples to weather conditions during their growth and maturation. Nautšnõje trudõ XLVI. Plodovodstvo, pp. 60 67 (in Russian). Lanauskas, J. & Kvikliene, N. 2006. Effect of calcium foliar application on some fruit quality characteristics of Sinap Orlovski apple. Agronomy Research 4(1), 31 36. Moor, U., Karp, K. Põldma, P., Asafova. L., Starast, M. 2006. Post-harvest disorders and mineral composition of apple fruits as affected by pre-harvest calcium treatments. Acta Agriculturae Scandinavica, B, 56, 179 185. Neilsen, G.H. & Neilsen, D. 2002. Effect of foliar Zn, form and timing of Ca sprays on fruit Ca concentration in new apple cultivars. Acta Horticulturae 594, 435 443. Retamales, J.B., Valdes, C., Dilley, D.R., Leon, L. & Lepe, V.P. 2000. Bitter pit prediction in apples through Mg infiltration. Acta Horticulturae 512, 169 179. Saure, M.C. 2002. New views of the prerequisites for an occurrence of bitter pit in apple and its control by calcium sprays. Acta Horticulturae 594, 421 426. 547

Sharples, R.O. 1980. The influence of orchard nutrition on the quality of apples and pears grown in the United Kingdom. In Atkinson, D., Jackson, J.E., Sharples, R.O. & Waller, W.M. (eds): Mineral nutrition of fruit trees. Butterworth, London, pp. 17 28. 548