Cofermentation of Cellobiose and Galactose by an Engineered Saccharomyces cerevisiae Strain

Similar documents
Simultaneous Co-Fermentation of Mixed Sugars: A Promising Strategy for Producing Cellulosic Biofuels and Chemicals

Genetic Optimisation of C6 and C5 Sugar Fermentation with Saccharomyces cerevisiae

Metabolic Engineering of a Strain of Saccharomyces cerevisiae Capable of Utilizing Xylose for Growth and Ethanol Production

Development of Recombinant Yeast for Cellulosic Ethanol Production From Concept to Large-Scale Production

Bioethanol Production from Apple Pomace left after Juice Extraction

Fermentation of Pretreated Corn Stover Hydrolysate

Parametric Studies on Batch Alcohol Fermentation Using Saccharomyces Yeast Extracted from Toddy

The Effects of the Rate of Nitrogen Consumption on the Duration of Alcohol Fermentation Remain Unknown

Specific Yeasts Developed for Modern Ethanol Production

YEASTS ISOLATION AND SELECTION FOR BIOETHANOL PRODUCTION FROM INULIN HYDROLYSATES

30 YEARS OF FUEL ETHANOL PRODUCTION IN BRAZIL: identification and selection of dominant industrial yeast strains.

WINE PRODUCTION. Microbial. Wine yeast development. wine. spoilage. Molecular response to. Molecular response to Icewine fermentation

Bioethanol Production from Pineapple Peel Juice using Saccharomyces Cerevisiae

The study of xylose fermenting yeasts isolated in the Limpopo province. Tshivhase M, E.L Jansen van Rensburg, D.C La Grange

Anaerobic Cell Respiration by Yeast

LACTIC ACID FERMENTATION OF BREWERS SPENT GRAIN HYDROLYSATE BY LACTOBACILLUS FERMENTUM AND LACTOBACILLUS RHAMNOSUS

Institute of Brewing and Distilling

Yeasts for low (and high) alcohol

The delicate art of wine making. Alfa Laval Foodec decanter centrifuges in the wine industry

Acetic Acid. Table of Contents

Production of Ethanol from Papaya Waste

Acid Hydrolysis of Lignocellulosic Content of Sawdust to Fermentable Sugars for Ethanol Production

Abstract Process Economics Program Report 236 CHEMICALS FROM RENEWABLE RESOURCES (March 2001)

Unit code: A/601/1687 QCF level: 5 Credit value: 15

Incorporation of sweet sorghum Juice in the current dry-grind ethanol process for improved ethanol yields, energy saving, and water efficiency

Decolorisation of Cashew Leaves Extract by Activated Carbon in Tea Bag System for Using in Cosmetics

POLLUTION MINIMIZATION BY USING GAIN BASED FERMENTATION PROCESS

Construction of a Wine Yeast Genome Deletion Library (WYGDL)

Asian Journal of Food and Agro-Industry ISSN Available online at

Meatless is a pioneer and front runner in the field of hybrid products

Effect of Yeast Propagation Methods on Fermentation Efficiency

Acetic Acid. Table of Contents

THE ABILITY OF WINE YEAST TO CONSUME FRUCTOSE

August Instrument Assessment Report. Bactest - Speedy Breedy. Campden BRI

Petite Mutations and their Impact of Beer Flavours. Maria Josey and Alex Speers ICBD, Heriot Watt University IBD Asia Pacific Meeting March 2016

BIOFUEL ETHANOL PRODUCTION BY Saccharomyces bayanus, THE CHAMPAGNE YEAST

Fed-batch Alcoholic Fermentation of Palm Juice (Arenga pinnata Merr) : Influence of the Feeding Rate on Yeast, Yield and Productivity

PDF - YEAST THE PRACTICAL GUIDE TO BEER FERMENTATION

Harvest Series 2017: Yeast Nutrition

Strategies for reducing alcohol concentration in wine

INITIAL INVESTIGATION ON ACETIC ACID PRODUCTION AS COMMODITY CHEMICAL

AWRI Refrigeration Demand Calculator

Mixed sugar fermentation by Pichia stipitis, Sacharomyces cerevisiaea, and an isolated xylose-fermenting Kluyveromyces marxianus and their cocultures

Pevzner P., Tesler G. PNAS 2003;100: Copyright 2003, The National Academy of Sciences

Optimal Feed Rate for Maximum Ethanol Production. Conor Keith Loyola Marymount University March 2, 2016

RESOLUTION OIV-OENO

Lorenzo Favaro 1, Marina Basaglia 1*, Alberto Trento 1, Eugéne Van Rensburg 2, Maria García-Aparicio 2, Willem H Van Zyl 3 and Sergio Casella 1

Ethanol production from Rice (Oryza sativa) straw by simultaneous saccharification and cofermentation

DOWNLOAD OR READ : YEAST STRESS RESPONSES 1ST EDITION PDF EBOOK EPUB MOBI

Setting up your fermentation

Simultaneous hydrolysis and fermentation of lignocellulose versus separated hydrolysis and fermentation for ethanol production

The effect of temperature on the carbon dioxide production of Saccharomyces cerevisiae as measured by the change in volume of carbon dioxide produced

Food Safety in Wine: Removal of Ochratoxin a in Contaminated White Wine Using Commercial Fining Agents

CONCENTRATION OF AROMA AND VITAMIN RICH FRUIT JUICES BY COMPLEX MEMBRANE TECHNOLOGY

Yeast- Gimme Some Sugar

Objective: To observe fermentation and discuss the process. Problem: Will yeast give off significant amounts of gas to inflate a balloon?

Making Ethanol 1 of 22 Boardworks Ltd 2012

Answering the Question

Sustainable oenology and viticulture: new strategies and trends in wine production

Journal of Chemical and Pharmaceutical Research, 2017, 9(1): Research Article

Alcoholic Fermentation in Yeast A Bioengineering Design Challenge 1

Influence of yeast strain choice on the success of Malolactic fermentation. Nichola Hall Ph.D. Wineries Unlimited, Richmond VA March 29 th 2012

Acta Chimica and Pharmaceutica Indica

Visit ISMA Workshop, New Delhi 22 nd January 2016

EVALUATION OF THERMOTOLERANT ACETOBACTER PASTEURIANUS STRAINS ISOLATED FROM MOROCCAN FRUITS CATALYZING OXIDATIVE FERMENTATION AT HIGH TEMPERATURE

succiniciproducens for the production of succinic acid from whey

Oregon Wine Industry Sustainable Showcase. Gregory V. Jones

The fermentation of glucose can be described by the following equation: C6H12O6 2 CH3CH2OH + 2 CO2 + energy glucose ethanol carbon dioxide.

About OMICS Group Conferences

Big Data and the Productivity Challenge for Wine Grapes. Nick Dokoozlian Agricultural Outlook Forum February

The Effect of ph on the Growth (Alcoholic Fermentation) of Yeast. Andres Avila, et al School name, City, State April 9, 2015.

An autoregulated fine-tuning strategy for titer improvement of secondary

Mixed sugar fermentation by Pichia stipitis, Sacharomyces cerevisiaea, and an isolated xylosefermenting Kluyveromyces marxianus and their cocultures

Department of Industrial Chemistry, Faculty of Natural Sciences, University of Tirana, Bulevardi Zogu I nn, 1000 Tirana, Albania

GROWTH TEMPERATURES AND ELECTROPHORETIC KARYOTYPING AS TOOLS FOR PRACTICAL DISCRIMINATION OF SACCHAROMYCES BAYANUS AND SACCHAROMYCES CEREVISIAE

NC STATE UNIVERSITY. Jay J. Cheng and Anne-M. Stomp NC STATE Biotechnology Center for Agriculture and Environment Rutgers University

Pak. J. Biotechnol. Vol. 14 (2) (2017) ISSN Print: ISSN Online:

THE GROWTH OF THE CHERRY OF ROBUSTA COFFEE

EFFECT OF CULTURAL CONDITIONS ON ETHANOL PRODUCTION BY LOCALLY ISOLATED SACCHAROMYCES CEREVISIAE BIO-07

HYDROGEN SULPHIDE FORMATION IN FERMENTING TODDY*

Molecular Basis of Fructose Utilization by the Wine Yeast Saccharomyces cerevisiae: a Mutated HXT3 Allele Enhances Fructose Fermentation

Reducing the impact of greenhouse gases on wine sector : situation in France and the OIVapproach

YEAST Wrangling The Many Flavors of Brewing Yeast CURT WITTENBERG FOR SOCIETY OF BARLEY ENGINEERS OCTOBER 4, 2017

MLF co-inoculation how it might help with white wine

ANALYSIS OF THE EVOLUTION AND DISTRIBUTION OF MAIZE CULTIVATED AREA AND PRODUCTION IN ROMANIA

EFFECT OF TOMATO GENETIC VARIATION ON LYE PEELING EFFICACY TOMATO SOLUTIONS JIM AND ADAM DICK SUMMARY

PINEAPPLE LEAF FIBRE EXTRACTIONS: COMPARISON BETWEEN PALF M1 AND HAND SCRAPPING

The Purpose of Certificates of Analysis

Where in the Genome is the Flax b1 Locus?

2009 Australian & New Zealand Winemakers P/L

CHAPTER 1 INTRODUCTION

BEEF Effect of processing conditions on nutrient disappearance of cold-pressed and hexane-extracted camelina and carinata meals in vitro 1

is pleased to introduce the 2017 Scholarship Recipients

Average Environmental Product Declaration of HAproWINE wineries

Paper Reference IT Principal Learning Information Technology. Level 3 Unit 2: Understanding Organisations

Case Study I Soy Sauce. Scenario:

Bread. Guided Inquiry Activity #27

Global Foodservice Equipment Market: Industry Analysis & Outlook ( )

MUMmer 2.0. Original implementation required large amounts of memory

THE INFLUENCE OF THIAMINE IN THE FERMENTATION OF THE WINE YEASTS

Transcription:

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 2011, p. 5822 5825 Vol. 77, No. 16 0099-2240/11/$12.00 doi:10.1128/aem.05228-11 Copyright 2011, American Society for Microbiology. All Rights Reserved. Cofermentation of Cellobiose and Galactose by an Engineered Saccharomyces cerevisiae Strain Suk-Jin Ha, 1,2 Qiaosi Wei, 1,2 Soo Rin Kim, 1,2 Jonathan M. Galazka, 3 Jamie Cate, 3,4 and Yong-Su Jin 1,2 * Department of Food Science and Human Nutrition 1 and Institute for Genomic Biology, 2 University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720 3 ; and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 4 Received 21 April 2011/Accepted 13 June 2011 We demonstrate improved ethanol yield and productivity through cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain expressing genes coding for cellodextrin transporter (cdt-1) and intracellular -glucosidase (gh1-1) from Neurospora crassa. Simultaneous fermentation of cellobiose and galactose can be applied to producing biofuels from hydrolysates of marine plant biomass. In addition to lignocellulosic biomass, marine plant biomass is considered a potential feedstock for producing biofuels. Marine biomass lacks the recalcitrant cell wall structures that are found in lignocellulosic biomass. Therefore, it is relatively easier to release fermentable sugars from marine biomass than from terrestrial biomass. Moreover, a recent study predicted that the use of croplands for corn or energy crops could increase greenhouse gases because of changes in land use (13), which suggests that biofuel production from marine biomass is an alternative option for reducing greenhouse gases through carbon sequestration. In particular, macroalgae are attractive because of their wide geographical distribution and high growth rate. A red seaweed (Gelidium amansii) abundant on the coastlines of Southeast Asia contains about 20% cellulose and 60% agar (galactan), while cellulosic biomass (switchgrass) consists of 31% cellulose, 20% hemicellulose, and 18% lignin (8, 14). A combined treatment of weak acid and enzyme (cellulase) of red seaweed will produce a mixture of cellobiose and galactose. Because Saccharomyces cerevisiae cannot ferment cellobiose, treatment with -glucosidase is required to generate fermentable hydrolysates containing glucose and galactose. While Saccharomyces cerevisiae can ferment both glucose and galactose, prevalent in hydrolysates of marine biomass, this yeast ferments glucose and galactose sequentially with a diauxic lag period, which results in the reduction of overall ethanol productivity (6, 11). Moreover, the ethanol yield from galactose is lower than the yield from glucose (1, 10). At least three different approaches to enhance galactose fermentation Downloaded from http://aem.asm.org/ on March 22, 2019 by guest FIG. 1. Fermentation profiles of a mixture of glucose (20 g/liter) and galactose (20 g/liter) (A and B) and a mixture of cellobiose (20 g/liter) and galactose (20 g/liter) (C) by an engineered S. cerevisiae strain (D452-2BT). Glucose severely repressed galactose fermentation, regardless of preculture conditions (cells grown on glucose [A] or on galactose [B]). However, cellobiose and galactose were fermented simultaneously (C). All values are the means of the results for two independent fermentations, and error bars represent the standard deviations of the results between two fermentations. Symbols: F, OD;, glucose; f, galactose; Œ, cellobiose; }, ethanol. * Corresponding author. Mailing address: University of Illinois at Urbana-Champaign, 1206 West Gregory Dr., Urbana, IL 61802. Phone: (217) 333-7981. Fax: (217) 333-0508. E-mail: ysjin@illinois.edu. Published ahead of print on 24 June 2011. 5822

VOL. 77, 2011 COFERMENTATION OF CELLOBIOSE AND GALACTOSE 5823 FIG. 2. Synergistic effects of cofermentation of cellobiose and galactose on ethanol yield and productivity compared to ethanol yield and productivity of single-sugar fermentations and glucose-galactose mixture fermentation. (A) 40 g/liter of cellobiose; (B) 40 g/liter of galactose; (C) a mixture of 40 g/liter of cellobiose and 40 g/liter of galactose; (D) a mixture of 40 g/liter of glucose and 40 g/liter of galactose. All values are the means of the results for two independent fermentations, and error bars represent the standard deviations of the results between two fermentations. Symbols: F, OD;, glucose; f, galactose; Œ, cellobiose; }, ethanol. Downloaded from http://aem.asm.org/ by S. cerevisiae have been undertaken. First, overexpression of a positive regulator (GAL4) and deletion of negative regulators (GAL6, GAL90, and MIG1) were shown to be effective in improving galactose fermentation (10, 12). Second, overexpression of a pivotal enzyme (encoded by PGM2) resulted in a 70% increase in galactose uptake rates (1). Third, overexpression of a truncated transcriptional activator (TUP1) mediating glucose repression resulted in higher ethanol productivity from a mixture of glucose and galactose through shortening the lag period between glucose and galactose fermentations (7). However, these approaches failed to achieve simultaneous fermentation of glucose and galactose because of the tight regulation of galactose metabolic enzymes by galactose (5, 6) and the strong transcriptional repression of galactose permease (GAL2) by glucose (9). In order to overcome these problems, we demonstrated simultaneous fermentation of cellobiose and galactose by an engineered S. cerevisiae strain expressing genes coding for a cellodextrin transporter (cdt-1) and an intracellular -glucosidase (gh1-1) from Neurospora crassa (2, 3). This cofermentation strategy offers higher productivity and yield of ethanol than does a parental strain that consumes glucose first and then ferments galactose only after depletion of glucose. In order to investigate the degree of glucose repression on galactose fermentation, an S. cerevisiae D452-2 (MAT leu2 his3 ura3 can1) strain was cultured on medium containing either glucose or galactose and inoculated into 50 ml of yeast extract-peptone (YP) medium containing both glucose (20 g/liter) and galactose (20 g/liter) (4). All fermentation experiments were performed at 30 C with the same initial cell density (optical density at 600 nm [OD 600 ], 1) under oxygen-limited conditions. As expected, strong preferential utilization of glucose was observed, regardless of preculture conditions. Both glucose- and galactose-grown cells consumed glucose rapidly, and galactose utilization started only after complete depletion of glucose (Fig. 1A and B). This is a typical fermentation characteristic of S. cerevisiae due to catabolic (glucose) repression (6, 11). While S. cerevisiae cells grown on galactose consumed galactose slightly faster than did the cells grown on glucose, severe catabolic repression was observed before galactose consumption. Ethanol yields from a sugar mixture of glucose and galactose were similar (0.34 versus 0.37 g ethanol/g sugar, respectively), regardless of the preculture conditions. However, galactose-grown cells showed higher volumetric productivity (0.61 g ethanol/liter h) than glucose-grown cells (0.38 g/liter h). To bypass the problems caused by glucose repression, we attempted cofermentation of cellobiose and galactose using an engineered S. cerevisiae (D452-2BT) strain. The D452-2BT strain contained two plasmids expressing a cellodextrin transporter (cdt-1) and an intracellular -glucosidase (gh1-1) (3). D452-2BT cells grown on medium containing cellobiose as a sole carbon source were inoculated into YP medium contain- on March 22, 2019 by guest

5824 HA ET AL. APPL. ENVIRON. MICROBIOL. TABLE 1. Comparison of cellobiose-galactose cofermentation result with sole-carbon-source fermentation by engineered S. cerevisiae (D452-2BT) a Added sugar (concn) for fermentation expt OD (A 600 ) EtOH concn (g/liter) EtOH yield (g/g) Vol P EtOH (g ethanol/liter h) Sp. P EtOH (g ethanol/g cell h) Cellobiose (40 g/liter) 18 0.59 13 0.30 0.34 0.01 0.37 0.01 0.17 0.02 Galactose (40 g/liter) 14 0.06 14 0.12 0.36 0.01 0.61 0.01 0.26 0.02 Cellobiose (20 g/liter) galactose 12 1.02 13 0.80 0.35 0.02 0.59 0.04 0.32 0.01 (20 g/liter) Cellobiose (40 g/liter) galactose 23 0.20 27 0.04 0.36 0.01 0.75 0.02 0.33 0.02 (40 g/liter) Glucose (40 g/liter) galactose (40 g/liter) 14 0.04 21 0.93 0.34 0.01 0.58 0.01 0.35 0.02 a Vol P EtOH and Sp. P EtOH denote volumetric ethanol (EtOH) productivity and specific EtOH productivity, respectively. All values are the means of results of two independent fermentations; errors represent the standard deviations of results between two fermentations. Sp. P EtOH was calculated during the period from 0 to 24 h of each fermentation. ing both 20 g/liter of cellobiose and 20 g/liter of galactose. The D452-2BT cells consumed the cellobiose and galactose simultaneously and produced 13 g/liter of ethanol within 22 h (Fig. 1C). Although cells were grown on cellobiose, a dimer of glucose, the repression of galactose utilization was not observed (Fig. 1C). Coconsumption of galactose and cellobiose suggests that glucose generated from cellobiose by -glucosidase intracellularly might not cause glucose repression, as is the case when glucose is added extracellularly. We have also observed similar levels of glucose derepression when cellobiose and xylose were cofermented by an engineered yeast strain containing both cellobiose and xylose fermentation pathways (3). In order to demonstrate the beneficial effects of the cofermentation on ethanol yield and productivity, we performed four fermentation experiments using different sugar concentrations. Cellobiose (40 g/liter), galactose (40 g/liter), cellobiose and galactose (40 g/liter of each), and glucose and galactose (40 g/liter of each) were used as carbon sources. The D452-2BT strain was able to ferment cellobiose and galactose simultaneously; a total of 80 g/liter of sugars (cellobiose and galactose) were consumed within 34 h (Fig. 2C). Although double the amount of sugars was consumed by the D452-2BT strain, cellobiose and galactose consumption rates were almost identical to those in single-sugar fermentation experiments using either galactose or cellobiose alone (Fig. 2A and B). As a result, ethanol productivity during the cofermentation improved drastically over that of single-sugar fermentations (Table 1). When a mixture of glucose and galactose was used, the D452-2BT strain consumed glucose rapidly, but galactose fermentation began only after glucose depletion (Fig. 2C and D). While the specific ethanol productivity (0.35 g ethanol/g cell h) from the mixture of glucose and galactose was similar to that of the cofermentation (0.33 g ethanol/g cell h) of cellobiose and galactose during the glucose consumption period from 0 to 24 h, the galactose fermentation rate after glucose depletion was much lower than the galactose fermentation rate during the cofermentation. Therefore, overall volumetric ethanol productivity from diauxic fermentation of glucose and galactose was much lower than that of cofermentation of cellobiose and galactose (0.58 versus 0.75 g ethanol/liter h, respectively). In summary, simultaneous fermentation of cellobiose and galactose exhibited improved cell growth (64%), ethanol titer (29%), ethanol yield (6%), and ethanol productivity (29%) compared to that of sequential fermentation of glucose and galactose. Moreover, cofermentation of cellobiose and galactose resulted in yields and productivities comparable to or better than those of single-sugar fermentation using the same amount of an individual sugar (Table 1). Through cofermentation of cellobiose and galactose, we were able to remove glucose repression, which delays the utilization of nonglucose sugars. This cofermentation strategy has advantages over the current sequential fermentation of glucose and galactose from the hydrolysates of marine biomass. First, the addition of -glucosidase is not required, as the engineered strain is capable of fermenting cellobiose, so the enzyme cost is lower. Second, the overall fermentation period can be reduced because the engineered strain consumes cellobiose and galactose simultaneously and volumetric productivity is increased. These benefits will contribute to economic biofuel production from marine biomass. This work was supported by funding from Energy Biosciences Institute to Yong-Su Jin. REFERENCES 1. Bro, C., S. Knudsen, B. Regenberg, L. Olsson, and J. Nielsen. 2005. Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl. Environ. Microbiol. 71:6465 6472. 2. Galazka, J. M., et al. 2010. Cellodextrin transport in yeast for improved biofuel production. Science 330:84 86. 3. Ha, S. J., et al. 2011. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. U.S.A. 108:504 509. 4. Hosaka, K., J. Nikawa, T. Kodaki, and S. Yamashita. 1992. A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J. Biochem. 111:352 358. 5. Ideker, T., et al. 2001. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929 934. 6. Johnston, M., J. S. Flick, and T. Pexton. 1994. Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:3834 3841. 7. Lee, K. S., et al. 2011. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Biotechnol. Bioeng. 108: 621 631. 8. Mosier, N., et al. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96:673 686. 9. Nehlin, J. O., M. Carlberg, and H. Ronne. 1991. Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J. 10:3373 3377. 10. Ostergaard, S., L. Olsson, M. Johnston, and J. Nielsen. 2000. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat. Biotechnol. 18: 1283 1286. Downloaded from http://aem.asm.org/ on March 22, 2019 by guest

VOL. 77, 2011 COFERMENTATION OF CELLOBIOSE AND GALACTOSE 5825 11. Ostergaard, S., K. O. Walloe, S. G. Gomes, L. Olsson, and J. Nielsen. 2001. The impact of GAL6, GAL80, and MIG1 on glucose control of the GAL system in Saccharomyces cerevisiae. FEMS Yeast Res. 1:47 55. 12. Ronnow, B., L. Olsson, J. Nielsen, and J. D. Mikkelsen. 1999. Derepression of galactose metabolism in melibiase producing bakers and distillers yeast. J. Biotechnol. 72:213 228. 13. Searchinger, T., et al. 2008. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319: 1238 1240. 14. Wi, S. G., H. J. Kim, S. A. Mahadevan, D. J. Yang, and H. J. Bae. 2009. The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour. Technol. 100:6658 6660. Downloaded from http://aem.asm.org/ on March 22, 2019 by guest

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Nov. 2011, p. 7438 Vol. 77, No. 20 0099-2240/11/$12.00 doi:10.1128/aem.06776-11 Copyright 2011, American Society for Microbiology. All Rights Reserved. ERRATUM Cofermentation of Cellobiose and Galactose by an Engineered Saccharomyces cerevisiae Strain Suk-Jin Ha, 1,2 Qiaosi Wei, 1,2 Soo Rin Kim, 1,2 Jonathan M. Galazka, 3 Jamie H. D. Cate, 3,4 and Yong-Su Jin 1,2* Department of Food Science and Human Nutrition 1 and Institute for Genomic Biology, 2 University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720 3 ; and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 4 Volume 77, no. 16, p. 5822 5825, 2011. Page 5822: The byline should read as given above. 7438