Influence of climate and deficit irrigation on grapevine physiology, yield and quality attributes, of the cv. Touriga Nacional at Douro Region

Similar documents
ARIMNet2 Young Researchers Seminar

Climatic shifts in high quality wine production areas, Emilia Romagna, Italy,

2011 VITICULTURAL YEAR

Impact of water status on vine physiology, grape ripening and terroir expression. Cornelis (Kees) van Leeuwen

Vintage 2006: Umpqua Valley Reference Vineyard Report

Grapevine in a changing environment field-oriented research to optimize short-term adaptation measures

Crop Load Management of Young Vines

HANDS-ON SOLUTIONS TO OVERCOME FAST GRAPE RIPENING

IMPOSING WATER DEFICITS TO IMPROVE WINE QUALITY AND REDUCE COSTS

Mechanical Canopy and Crop Load Management of Pinot Gris. Joseph P. Geller and S. Kaan Kurtural

Do lower yields on the vine always make for better wine?

Deficit Irrigation Scheduling for Quality Winegrapes

Mike Trought Plant and Food Research Marlborough Research Centre Blenheim, New Zealand

Lack of irrigation in 2002 reduced Riesling crop in Timothy E. Martinson Finger Lakes Grape Program

Vintage 2008: Umpqua Valley Reference Vineyard Report

Phenolics of WA State Wines*

A Climate for Sauvignon Blanc: Lake County

Evolution of Grapegrowing Techniques and New Viticulture Ideas in Spain. Jesús Yuste.

Integrated Protection in Viticulture

Your headline here in Calibri.

2013 Vintage Weather Summary for Two Blondes Vineyard

Measured effects of elevated temperature on vine phenology, yield, berry and wine attributes

WALNUT HEDGEROW PRUNING AND TRAINING TRIAL 2010

Understanding your site: soils, climate, rootstocks and management strategies

Vineyard Water Management

Gregory V. Jones, Ph.D. Division of Business, Communication, and the Environment Department of Environmental Science and Policy

MONTES DRY FARMING PROJECT. October, 2014

STUDY OF AGROMETEOROLOGICAL MEASUREMENTS ON TERROIRS OF ALENTEJO WINE REGION: IMPACT ON GRAPE YIELD AND HARVEST DATE VARIATION

Plant root activity is limited to the soil bulbs Does not require technical expertise to. wetted by the water bottle emitter implement

Berry = Sugar Sink. Source: Sink Relationships in the Grapevine. Source: Sink Relations. Leaf = Photosynthesis = Source

Effects of Plastic Covers on Canopy Microenvironment and Fruit Quality. Matthew Fidelibus Viticulture & Enology UC Davis

Late season leaf health CORRELATION OF VINEYARD IMAGERY WITH PINOT NOIR YIELD AND VIGOUR AND FRUIT AND WINE COMPOSITION. 6/22/2010

Smoke Taint Risk Management Tools

Climate Change and Wine

INVESTIGATIONS INTO THE RELATIONSHIPS OF STRESS AND LEAF HEALTH OF THE GRAPEVINE (VITIS VINIFERA L.) ON GRAPE AND WINE QUALITIES

MONTHLY COFFEE MARKET REPORT

OUTLINE Plan of the talk. Introduction Vineyards are variable in space The efficient vineyard project. The field site in Sonoma Results

2011 Vintage Weather Summary for Two Blondes Vineyard

Using Growing Degree Hours Accumulated Thirty Days after Bloom to Help Growers Predict Difficult Fruit Sizing Years

Washington State Wine 101

Fruit Set, Growth and Development

Leaf removal: a tool to improve crop control and fruit quality in vinifera grapes

21/06/2009. Metric Tons (000) '95 '96 '97 '98 '99 '00 '01 '02 '03 '

The 2007 Vintage. Laurence GENY*, Benjamin BOIS**, Bernard DONECHE* and Denis DUBOURDIEU*

Flowering and Fruiting Morphology of Hardy Kiwifruit, Actinidia arguta

NEW ZEALAND AVOCADO FRUIT QUALITY: THE IMPACT OF STORAGE TEMPERATURE AND MATURITY

Specific mediterranean characteristics. Mediterranean climate

NE-1020 Cold Hardy Wine Grape Cultivar Trial

2012 Research Report Michigan Grape & Wine Industry Council

MONTHLY COFFEE MARKET REPORT

Impact of Vineyard Practices on Grape and Wine Composition

Colorado State University Viticulture and Enology. Grapevine Cold Hardiness

World of Wine: From Grape to Glass

The aim of the thesis is to determine the economic efficiency of production factors utilization in S.C. AGROINDUSTRIALA BUCIUM S.A.

Growing Cabernet Sauvignon at Wynns Coonawarra Estate

Grape Berry Ripening: Environmental Drivers and Spoilers

Influence of shoot density on leaf area, yield and quality of Tas-A-Ganesh grapes (Vitis vinifera L.) grafted on Dog Ridge rootstock

Regression Models for Saffron Yields in Iran

Coffee weather report November 10, 2017.

WITHIN VINEYARD TEMPERATURE STRUCTURE AND VARIABILITY IN THE UMPQUA VALLEY OF OREGON

Lesson 2 The Vineyard. From Soil to Harvest

Characteristics of Petit verdot grape variety (Vitis vinifera L.) grown in Tikveš vineyards

Fátima Gonçalves, Cristina Carlos, Susana Sousa, Márcio Nóbrega, José C. Franco, José Manso, António Pinto, Laura Torres

STATE OF THE VITIVINICULTURE WORLD MARKET

QUARTERLY REVIEW OF THE PERFORMANCE OF THE DAIRY INDUSTRY 1

REASONS FOR THE RISE IN ALCOHOL LEVELS IN NAOUSSA PDO WINES. Presented by Yiannis Karakasis MW

The Implications of Climate Change for the Ontario Wine Industry

Influence of Cultivar and Planting Date on Strawberry Growth and Development in the Low Desert

Final Report. TITLE: Developing Methods for Use of Own-rooted Vitis vinifera Vines in Michigan Vineyards

Healthy Soils for a Sustainable Viticulture John Reganold

Vineyard Site Selection and Layout. Dean Volenberg UW-Extension Door County

Using Less Water and Liking It

Coffee market ends 2016/17 coffee year in deficit for the third consecutive year

Elderberry Ripeness and Determination of When to Harvest. Patrick Byers, Regional Horticulture Specialist,

Module 6. Yield and Fruit Size. Presenter: Stephan Verreynne

Evaluation of the effect of complementary pollination on Actinidia deliciosa CV. Hayward in northwest Portugal

Irrigation of Sunflowers in Northwestern Kansas

Interaction of applied water amounts and leaf removal in the fruiting zone on grapevine water relations and productivity of Merlot

LAKE ONTARIO BEAMSVILLE BENCH VINEMOUNT RIDGE STATISTICS

Coffee market ends 2017/18 in surplus

Varieties and Rootstocks in Texas

Gabriel Balint, MoSco. A Thesis. submitted to the Department of Biological Sciences. in partial fulfillment of the requirements.

Wine Grape Cultivar Trial Performance in 2006 Introduction Materials and Methods Results and Discussion

Growing Grapes for White Wine Production: Do s and Don ts in the Vineyard

Soybean Seeding Date Effects on Productivity Jane Froese 1, Bruce Brolley 2 and Derek Lewis 1

REGULATED DEFICIT IRRIGATION MANAGEMENT FOR WINEGRAPES

Practical Aspects of Crop Load and Canopy Management

Effects of Leaf Removal and UV-B on Flavonoids, Amino Acids and Methoxypyrazines

Joseph G. Alfieri 1, William P. Kustas 1, John H. Prueger 2, Lynn G. McKee 1, Feng Gao 1 Lawrence E. Hipps 3, Sebastian Los 3

A new approach to understand and control bitter pit in apple

Irrigation Management of Winegrapes with a Limited Water Supply

Pruning decisions for premium sparkling wine production. Dr Joanna Jones

(36) PROHEXADIONE-CALCIUM AFFECTS SHOOT GROWTH AND YIELD OF LEMON, ORANGE AND AVOCADO DIFFERENTLY

POTENTIAL OF THE LAND IN ARCHAR VILLAGE FOR CREATION OF VINES FOR QUALITY WINE GRAPE VARIETIES. CLIMATIC AND GEOGRAPHIC SPECIALITY OF THE TERROIR

Study of Compatibility of Grape with East-Azerbaijan Climate

Soft Commodity Markets - Upcoming Milestones, and How the Market Could Be Affected

CHEMICAL THINNING OF APPLE UNDER NORWEGIAN CONDITIONS. WHAT WORKS?

Studying the grapevine water stress in the digital era: from sensor-based irrigation scheduling to in-vivo visualization techniques

Record Exports for Coffee Year 2016/17

PRD. ( : -*) 3- Water Use Efficiency 3 (WUE)

Transcription:

Influence of climate and deficit irrigation on grapevine physiology, yield and quality attributes, of the cv. Touriga Nacional at Douro Region Fernando ALVES 1*, Jorge COSTA 1, Paulo COSTA 1, Carlos CORREIA 2, Berta GONÇALVES 2, Rui SOARES 3, José MOUTINHO-PEREIRA 2. 1 ADVID, Associação para o Desenvolvimento da Viticultura Duriense (Douro Wine Region Cluster), Quinta St. Maria, APT 137, 5050-106 Godim, Portugal 2 CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal 3 RCV Real Companhia Velha, Quinta das Carvalhas, 5085-034 Pinhão, Portugal * Corresp. author: Fernando Alves, Phone +351254312940, FAX +351254321350, e- mail : Fernando.alves@advid.pt ABSTRACT The Douro Region located in Northeast Portugal, within the Douro river basin, is surrounded by craggy mountains that confer it characteristic Mediterranean like climate with important inter-annual variability, were grapevines are exposed to severe water stress during the summer period, which in some years strongly affects their vintage behaviour. In order to mitigate these effects a study was conducted in a commercial vineyard with cv Touriga Nacional growing under three water regimes: non-irrigated (NI) and two irrigation strategies (WR1-30% ETc and WR2-60% ETc), in three selected years (2005, 2007 and 2009) which according the classification proposed by Winkler and co-authors put this place in the zones V, III and IV, respectively. The results showed that non-irrigated grapevines experienced severe water stress and consequently lower photosynthetic rates, due to stomatal and mesophylic limitations. By contrast, moderate levels of irrigation had a positive impact on leaf gas exchange rates, and on yield and berry quality. Key Words: grapevine, climate, water stress, Douro Region. 1 INTRODUCTION Wine production is strongly influenced by the climate, which is considered a major factor in the ecosystem interactions that define terroir [11]. The climate varies from region to region and from one year to another resulting in the vintage effect with important impact on wine prices [12]. The importance of climate on vine physiology can be

described by the growing degree days and water stress experienced by vines [12, 14]. In Mediterranean field conditions, as in the Douro region, water deficits usually develop gradually during the summer and are normally associated with high temperature and irradiance stresses [2]. The climate is characterized by a notable inter-annual consistency of global insolation, temperature, and potential evapotranspiration along with significant annual and seasonal variation in precipitation, that develops deficit water balance [8], give rise to situations of intense summer stress with different limitations to photosynthesis [9], and constraints to quality under sever water limitations [10, 1, 5]. Projections of future warming at Douro region scale reveal higher growing season temperatures, increases in extreme temperatures, fewer cold events that are not as cold, more and higher heat stress events, and a lower diurnal temperature range will likely continue challenging the ability to adequately grow grapes and produce quality wine [6]. In order to mitigate these effects, vine growers promote evolutionary adaptation of cultural practices, introducing the irrigation in their vineyards. However, given the multiple characteristics of the topography, soil, variety and rootstocks and the scarcity of water resources, the knowledge of the water management strategies has been one of the most pertinent issues in the region. The aim of this work was to explore the effects of climate and irrigation levels in three different years on physiology, yield and quality attributes. 2 MATERIALS AND METHODS This study was carried out in a section of a commercial vineyard (Touriga Nacional x 196-17), at Quinta dos Aciprestes (Real Companhia Velha), planted in 1998 (2,2m x 1m) in schist complex soil, on a vertical slope orientation of 25%, and trained on bilateral Royat with 12 buds per plant. The site has a Mediterranean-type climate with average annual rainfall of 560 mm. During the study years, 2005 was a very drought year, below the mean values, while 2007 and 2009 have similar annual precipitation, but with different seasonal pattern, with higher rainfall in 2007 growing season (Figure 1). Three water regimes with four replications were imposed: non-irrigated (NI), and two water application strategies, WR1 (30% ETc) and WR2 (60% ETc). The water application start when the predawn leaf water potential (Ψ pd ) reach the value of -0,3 MPa (late June till mid-july), and

stop near 2 weeks before the harvest, with drip pressure compensating 2,3 L/h emitters at 1,0 m spacing between two adjacent vines. During the seasons, the water stress was accessed through Ψ pd, measured in six uncovered leaves (n=24), every 7 or 15 days, with a pressure chamber (model PMS 600). Climate data was collected with an automatic weather station (model ADCCON 733), located in the middle of the parcel. Leaf gas exchange measurements were performed in 2009 using a portable IRGA (LCpro+, ADC, Hoddesdon, UK), operating in the open mode. Net CO 2 assimilation rate (A), stomatal conductance (g s ), transpiration rate (E), ratio of intercellular to atmospheric CO 2 concentration (C i /C a ) and intrinsic water use efficiency (A/g s ) were estimated from gas exchange measurements using the equations developed by [13]. Berry ripening was followed weekly, and at harvest, yield, vigour, pruning weight per vine was determined in 20 samples, and fruit composition using a 200 berry samples, for analysis of soluble solids (ºBrix), ph, titratable acidity, phenols and total anthocyanins as proposed by [4]. 47 Precipitation (mm) annual growing season * Precipitation (mm) between phenological stages year 587 70 107 47 59 1 2009 577 222 73 137 12 2007 174 95 68 5 22 2005 Feb Mar Apr May Jun Jul Aug Sep Oct Bud break - Bloom Bloom - Veraison Verasion - Harvest Fig 1 - Precipitation and phenology in 2005, 2007 and 2009. 3 RESULTS AND DISCUSSION Table 1 exhibits the behaviour of the three years related to the temperature and the heat load during the summer, expressed in growing degree days (GDD) and number of the days with temperatures above the optimum for photosynthetic activity. The data shows substantial differences in GDD between the coolest year 2007, and the warmest year, 2005. In the warmer years we also note a very important percentage of days with temperature greater than 35ºC, with 2005 experiencing 50% of the days as compared to 12%, in 2007. The values in GDD observed, put this local in a Region III, IV and V, at 2007, 2009 and 2005, respectively, according with the classification proposed by [14] in [7].

Table 1 Average growing season temperature (GST), growing degree-days (GDD), number of days with temperature >30ºC and >35ºC, % of the days with temperature >35 ºC from June to August, predawn leaf water potential (n=10) at veraison and ripening and (14) classification in 2005, 2007, 2009 and mean values for period 2002-2011. GST GDD nº days nº days % days Ψpd Ψpd Winkler Year (Mar-Sep) (Mar-Sep) (Mar-Sep) (Mar-Sep) (J-J-A) (veraison) (ripening) (Region) (ºC) (Cº units) T>30 (ºC) T>35 (ºC) T> 35 (ºC) (MPa) (MPa) 2005 20.9 2372 92 46 50% -1.34 c -1.25 b V 2009 20.2 2189 81 33 28% -0.90 b -1.19 b IV 2007 19.3 1882 72 12 12% -0.44 a -0.67 a III 2002-2011 20.2 2179 86 33 32% -0.91-0.87 IV The results showed that vineyards in the Douro region frequently experience a severe water stress with predawn water potential levels below the general reference to different types of the wines [3], which reduce photosynthetic activity, mainly at midday, due to both stomatal and non-stomatal limitations, as can be seen by g s and C i /C a values. Thus, irrigation has positive effects on leaf gas exchange rates and even in intrinsic water use efficiency by late August (Table 2). Table 2 Net photosynthesis (A, µmol m -2 s -1 ), transpiration rate (E, mmol m -2 s -1 ), stomatal conductance (g s, mmol m -2 s -1 ), intercellular CO 2 concentration/ambient CO 2 ratio (C i /C a ), intrinsic water use efficiency (A/g s, µmol mol -1 ) and leaf water potential determined in 2009 at morning (except Ψ that was measured at predawn) and midday period for cv. Touriga Nacional under three water regimes. Values represent the mean (n=10). Within one diurnal period and parameter, means followed with different letters are significantly different at P<0.05. Data Diurnal period WR A E g s C i /C a A/g s Ψ 29 Jul Morning NI 3.09 a 1.64 a 101.6 a 0.81 b 37.7 a -0.94 a (2009) WR1 8.97 b 3.34 b 215.9 b 0.75 a 47.3 a -0.58 b WR2 13.16 c 4.30 c 324.2 c 0.76 a 41.4 a -0.34 c Midday NI 0.64 a 0.54 a 18.7 a 0.84 b 37.7 a -1.57 a WR1 8.74 b 2.44 b 123.8 b 0.61 a 41.4 a -1.45 b WR2 11.70 c 3.34 c 187.6 c 0.64 a 42.0 a -1.31 c 27 Aug Morning NI 3.56 a 1.67 a 136.6 a 0.87 b 25.8 a -1.18 a (2009) WR1 11.26 b 2.69 b 225.0 b 0.73 a 49.8 b -0.61 b WR2 13.54 b 2.88 b 254.6 b 0.69 a 55.6 b -0.36 c Midday NI 0.53 a 0.89 a 24.6 a 0.86 b 24.1 a -1.54 a WR1 5.11 b 1.86 b 105.5 b 0.77 b 45.9 a -1.21 b WR2 11.49 c 1.61 b 101.2 b 0.42 a 115.6 b -1.19 b

The values for yield components, vigour and fruit composition are strongly affected by the year characteristics, with a significant yield reduction in 2005, mostly due to a decrease in cluster and berry weight, and also a reduction in sugar content and acidity (Table 3). Also in the NI vines, the leaf surface tends to decrease by scorching reaching 50% in years with severe water stress (data not shown). Both irrigation levels have a positive significant effect on yield due to an increase in clusters, number and weight, and berry weight. Irrigation also increases shoot weight and better balanced vigour (Ravaz index). Fruit quality changed with irrigation treatments, with an increase in sugar content and a reduction in acidity, although no significant effect was registered on ph. During the ripening period, a regular increase of sugar was observed during 2007 (data not shown), while sugar accumulation slowed or even stopped during the ripening period in 2009 and mainly in 2005. Table 3 - Yield attributes, vigour, and fruit composition at harvest, determined in the 2005, 2007 and 2009 experiments for cv. Touriga Nacional under three water regimes. Values represent the mean (n=80 for yield and vigour; n=4 for fruit composition, 200 berry per sample). Means followed with different letters are significantly different at P<0.05. (na - data not available). Year Water Regime (WR) Interaction 2005 2007 2009 NI WR1 WR2 Year x WR Clusters per vine (nº) 19.3b 19.9ab 20.8ab 18.8b 20.3a 20.9a *** Yield per vine (kg) 1.35c 2.84a 1.74b 1.36c 2.15b 2.41a ns Cluster weight (kg) 0.07c 0.14a 0.08b 0.08c 0.10b 0.11a *** Shoot weight (g) 29.2b 33.7a 33.8a 29.2b 32.4a 35.1a * Ravaz index 3.59b 4.80a 3.23b 3.03b 4.18a 4.40a * Berry weight (g) 0.9c 1.6a 1.3b 1.0b 1.3a 1.4a * ºBrix 21.3b 23.3a 24.0a 21.8b 23.4ab 23.5a ns Acidity (TA) (g/l) 2.83c 3.98b 4.39a 3.97a 3.59b 3.65b ** ph 4.19a 3.66b 3.57b 3.85a 3.80a 3.77a ns Phenols (IPT) na 55.1a 49.8a 55.4a 50.4a 51.8a ns Anthocyanins (mg/l) na 1313.3a 1007.4a 1151.2a 1193.6a 1136.2a ns 4 CONCLUSIONS Grapevines experienced a severe heat and water stress with low levels of water potential and strong negative effects on physiology, yield and quality. Moderate levels of irrigation had a significant impact on yield and on berry sugar concentration. On the other hand, a variable behaviour regarding the interaction between climate conditions and water

management, as a tool to regulate the terroir characteristics to achieve the better potential quality of the grapevines, was showed. Further work is needed to modeling the water stress management with climate variability in order to improve grapevine quality. REFERENCES 1. Alves, F., Almeida, F., Moutinho-Pereira, J., Magalhães, N., Aranha, J. (2006). Monitoring water deficit in vineyards by means of red and infrared measurements. VIth International Terroir Congress; Vol I, 280-285, Bordeaux. 2. Alves, F., Costa, J. (2011). Monitoring water stress in the Douro Region: references to decision support tools. XXXIV OIV Congress, Porto, Portugal. 3. Deloire, A., Ojeda, H., Zebic, O., Bernard, N., Hunter, J-J., Carbonneau, A. (2005). Prog. Agr. Vitic., 122, nº 21, p:455-462. 4. Glories Y., Augustin M. - 1990 - Actualités Œnologiques. Ed. Dunod, Paris, F, pp 419. 5. Graça, A. R., Pessanha, M., Porto J. P., Sottomayor, L., Alves, F., Costa, J., Ojeda, H. (2011). Contrôle de l état hydrique de la vigne: application d une stratégie d irrigation pour augmenter la qualité des raisins d un vignoble de Touriga Nacional dans la Région du Douro, Portugal, Oeno 2011, in press. 6. Jones, G., Alves, F. (2012). Impacts of Climate Change on Wine Production: A Global Overview and Regional Assessment in the Douro Valley of Portugal. Int. J. Glo. Warm., in press. 7. Jones, G.V, Duff, A.A., Hall, A., and J. Myers (2010). Am. J. Enol. Viti.., 61:313-326. 8. Malheiro, A., Santos, J.A., Fraga, H., Pinto, J.G. (2010). Climate Research 43 (3): 163-177. 9. Moutinho-Pereira, J.M., Correia, C., Gonçalves, B.M., Bacelar, E.A., Torres-Pereira, J.M. (2004). Photosynthetica, 42 (1):81-86. 10. Oliveira, C., Silva-Ferreira, A.C., Pinto, M., Hogg, T., Alves, F., Pinho, P. (2003). J. Am. Food Chem.; 51(20):5967-71. 11. Van Leeuwen, C., Bois, B., Pieri, P.,Gaudillere, J-P., (2007). Climate as a terroir component. Congr. on Climate and Viticulture, 10-14 April 2007, Zaragoza, Spain. pp 90-98. 12. Van Leeuwen, C., Friant, P., Chone, X., Tregoat, O., Koundouras, S. Dubourdieu, D. (2004). Am. J. Enol. Viti., v. 55, nº. 3, 207-217- 13. Von Caemmerer, S., Farquhar, G.D. (1981). Planta 153: 376-387. 14. Winkler, A.J., Cook, J.A. Kliewer, W.M. Lider, L.A. (1974). General Viticulture. 4th ed. University of California Press, Berkeley. Acknowledgments: Authors would like to acknowledge the colleagues from ADVID, Fernanda Almeida, Cristina Carlos, Branca Teixeira, and Hugo Pinto, for the collaboration in the measurements. Funded in part by the Association for the Development of Viticulture in the Douro, and by QREN (European Fund for Regional Development), through the POFC (Operational Program for Competitiveness Factors).