AN ABSTRACT OF THE THESIS OF. Peter Joseph Pelofske for the degree of Master of Science. in Horticulture presented on June 16, 1977

Similar documents
ALBINISM AND ABNORMAL DEVELOPMENT OF AVOCADO SEEDLINGS 1

THE MANIFOLD EFFECTS OF GENES AFFECTING FRUIT SIZE AND VEGETATIVE GROWTH IN THE RASPBERRY

STEM ELONGATION AND RUNNERING IN THE MUTANT STRAWBERRY, FRAGARIA VESCA L.

Chapter V SUMMARY AND CONCLUSION

Effects of Preharvest Sprays of Maleic Hydrazide on Sugar Beets

SELF-POLLINATED HASS SEEDLINGS

Flowering and Fruiting Morphology of Hardy Kiwifruit, Actinidia arguta

EFFECT OF TOMATO GENETIC VARIATION ON LYE PEELING EFFICACY TOMATO SOLUTIONS JIM AND ADAM DICK SUMMARY

PERFORMANCE OF FOUR FORAGE TURNIP VARIETIES AT MADRAS, OREGON, J. Loren Nelson '

Calvin Lietzow and James Nienhuis Department of Horticulture, University of Wisconsin, 1575 Linden Dr., Madison, WI 53706

1. Title: Identification of High Yielding, Root Rot Tolerant Sweet Corn Hybrids

Quality of western Canadian flaxseed 2012

2012 Organic Broccoli Variety Trial Results

GENETICS AND EVOLUTION OF CORN. This activity previews basic concepts of inheritance and how species change over time.

western Canadian flaxseed 2003

FALL TO WINTER CRANBERRY PLANT HARDINESS

Progress Report on Avocado Breeding

PROBATION AND FOUNDATION PLOT PRODUCTION OF CANOLA, MUSTARD, RADISH, RAPESEED, SAFFLOWER, AND SUNFLOWER

Sorghum Yield Loss Due to Hail Damage, G A

D Lemmer and FJ Kruger

Determination of Fruit Sampling Location for Quality Measurements in Melon (Cucumis melo L.)

Retailing Frozen Foods

Studies in the Postharvest Handling of California Avocados

Somatic Mutation of Tea Plants Induced by y-irradiation

PERFORMANCE OF HYBRID AND SYNTHETIC VARIETIES OF SUNFLOWER GROWN UNDER DIFFERENT LEVELS OF INPUT

Name. AGRONOMY 375 EXAM III May 4, points possible

Combining Ability Analysis for Yield and Morphological Traits in Crosses Among Elite Coffee (Coffea arabica L.) Lines

FRUIT GROWTH IN THE ORIENTAL PERSIMMON

WALNUT HEDGEROW PRUNING AND TRAINING TRIAL 2010

What Went Wrong with Export Avocado Physiology during the 1996 Season?

Pecan Pollination. Dr. Patrick Conner University of Georgia, Horticulture Department

Buying Filberts On a Sample Basis

Quality of western Canadian flaxseed 2013

Research - Strawberry Nutrition

7. LOCALIZATION OF FRUIT ON THE TREE, BRANCH GIRDLING AND FRUIT THINNING

THE EFFECT OF GIRDLING ON FRUIT QUALITY, PHENOLOGY AND MINERAL ANALYSIS OF THE AVOCADO TREE

Non-Structural Carbohydrates in Forage Cultivars Troy Downing Oregon State University

NAME OF CONTRIBUTOR(S) AND THEIR AGENCY:

THE GROWTH OF THE CHERRY OF ROBUSTA COFFEE

TEMPERATURE CONDITIONS AND TOLERANCE OF AVOCADO FRUIT TISSUE

AJAE Appendix: Testing Household-Specific Explanations for the Inverse Productivity Relationship

Soybean Yield Loss Due to Hail Damage*

Quality of Canadian oilseed-type soybeans 2017

RUST RESISTANCE IN WILD HELIANTHUS ANNUUS AND VARIATION BY GEOGRAPHIC ORIGIN

Proso millet (Panicum miliaceum L.)

Blackberry Growth Cycle and New Varieties from the University of Arkansas. Alejandra A. Salgado and John R. Clark March 13 th, 2015 Virginia

CODEX STANDARD FOR CANNED APRICOTS CODEX STAN

Silage Corn Variety Trial in Central Arizona

Silage Corn Variety Trial in Central Arizona

BATURIN S.O., KUZNETSOVA

GENOTYPIC AND ENVIRONMENTAL EFFECTS ON BREAD-MAKING QUALITY OF WINTER WHEAT IN ROMANIA

COMPARISON OF SEEDING RATES AND COATING ON SEEDLING COUNT, ROOT LENGTH, ROOT WEIGHT AND SHOOT WEIGHT OF CRIMSON CLOVER

AVOCADO GENETICS AND BREEDING PRESENT AND FUTURE

Results from the 2012 Berry Pricing Survey. Science Bldg., Ithaca, NY 14853

FACTORS DETERMINING UNITED STATES IMPORTS OF COFFEE

IT 403 Project Beer Advocate Analysis

COMPARISON OF CORE AND PEEL SAMPLING METHODS FOR DRY MATTER MEASUREMENT IN HASS AVOCADO FRUIT

Confectionary sunflower A new breeding program. Sun Yue (Jenny)

Pollination of Vegetable Crops

Preliminary observation on a spontaneous tricotyledonous mutant in sunflower

Evaluation of desiccants to facilitate straight combining canola. Brian Jenks North Dakota State University

Sugar maple tree named Legacy

Evaluating Hazelnut Cultivars for Yield, Quality and Disease Resistance

OF THE VARIOUS DECIDUOUS and

Development of the Parthenocarpic Eggplant Cultivar Anominori

Wine-Tasting by Numbers: Using Binary Logistic Regression to Reveal the Preferences of Experts

Quality of Canadian oilseed-type soybeans 2016

Project Concluding: Summary Report Mandarin Trial for the California Desert

Selecting Collard Varieties Based on Yield, Plant Habit and Bolting 1

CORRELATIONS BETWEEN CUTICLE WAX AND OIL IN AVOCADOS

Temperature effect on pollen germination/tube growth in apple pistils

Fungicides for phoma control in winter oilseed rape

Research Progress towards Mechanical Harvest of New Mexico Pod-type Green Chile

Studies on the performance of different genotypes of cauliflower grown in plains and higher altitude of Kerala

Which of your fingernails comes closest to 1 cm in width? What is the length between your thumb tip and extended index finger tip? If no, why not?

Testing Tomato Hybrids for Heat Tolerance at West Tennessee Experiment Station, Jim E. Wyatt and Craig H. Canaday. Interpretative Summary

Further investigations into the rind lesion problems experienced with the Pinkerton cultivar

Yield Comparisons of Bt and Non-Bt Corn Hybrids in Missouri in 1999

GLOSSARY Last Updated: 10/17/ KL. Terms and Definitions

G Soybean Yield Loss Due to Hail Damage

Quality of western Canadian flaxseed 2014

THE EFFECT OF DIFFERENT APPLICATIONS ON FRUIT YIELD CHARACTERISTICS OF STRAWBERRIES CULTIVATED UNDER VAN ECOLOGICAL CONDITION ABSTRACT

Biologist at Work! Experiment: Width across knuckles of: left hand. cm... right hand. cm. Analysis: Decision: /13 cm. Name

Report To The Oregon Processed Vegetable Commission

Effect of Storage Period and Ga3 Soaking of Bulbs on Growth, Flowering and Flower Yield of Tuberose (Polianthes Tuberosa L.) Cv.

POTATOES USA / SNAC-INTERNATIONAL OUT-OF-STORAGE CHIP QUALITY MICHIGAN REGIONAL REPORT

Specialty Coffee Market Research 2013

(12) Plant Patent Application Publication

(A report prepared for Milk SA)

Green Beans, the Wonderful Fruit Using Scientific Measurement

Identifying Soybean Growth Stages

Determining the Optimum Time to Pick Gwen

EXECUTIVE SUMMARY. 1. When do Asian clams reproduce in Lake George? 2. How fast do Asian clams grow in Lake George?

HARVESTING MAXIMUM VALUE FROM SMALL GRAIN CEREAL FORAGES. George Fohner 1 ABSTRACT

Effect of paraquat and diquat applied preharvest on canola yield and seed quality

THE EFFECT OF ETHYLENE UPON RIPENING AND RESPIRATORY RATE OF AVOCADO FRUIT

Performance of Zucchini Yellow Mosaic Virus Resistant Golden Delicious Type Pumpkin Hybrids

CODEX STANDARD FOR CANNED PLUMS 1 CODEX STAN

UNITED STATES STANDARDS FOR WHOLE DRY PEAS¹

(Definition modified from APSnet)

Transcription:

AN ABSTRACT OF THE THESIS OF Peter Joseph Pelofske for the degree of Master of Science in Horticulture presented on June 16, 1977 Title: INHERITANCE OF INTERNODE LENGTH, PLANT FORM AND BIENNIAL HABIT IN A CROSS OF CABBAGE (BRASSICA OLERACEA L. CAPITATA GROUP) X BROCCOLI (ITALICA GROUP) Abstract approved:.. / ' James R. Bagged An inbred cabbage line (Brassica oleracea L. (Capitata group)) and an inbred broccoli line (B. oleracea L. (Italica group)) were crossed. F-. progeny were vigorous annuals. Of 3,260 F^ plants, 250 were biennials and 70 developed cabbage heads. Of these 70, 32 were annuals. Days to first visible buds of the annuals and internode length varied continuously and appeared to be controlled by a few genes with modifiers. Both are primarily controlled by additive gene action as shown graphically and by the heritability estimates calculated by Warner's method. Cabbage head forming ability, clasping of leaves and annualbiennial habit also appear to be controlled by a number of genes. Open leaves were dominant over clasped; annual habit was dominant over biennial; and cabbage head forming plants were a minority. Chi square tests showed a highly significant association between cabbage head forming ability and biennial habit. Clasping of leaves, a factor in cabbage heading, was also shown to be associated with biennial habit.

Inheritance of Internode Length, Plant Form and Biennial Habit in a Cross of Cabbage (Brassica Oleracea L. Capitata Group) X Broccoli (Italica Group) by Peter Joseph Pelofske A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Completed June 16, 1977 Commencement June 1978

APPROVED: 'I'*'\<" v Professoryraf Horticulture ff in charge of major Head of DepartiSenti" of Horticulture Deari of Graduate School Date thesis is presented Ay /f77 Typed by Lora Wixom for Peter Joseph Pelofske

TABLE OF CONTENTS INTRODUCTION 1 LITERATURE REVIEW 3 Cabbage 3 Broccoli 4 Other Brassica 5 Intervarietal Crosses 6 MATERIALS AND METHODS 8 Plant Materials 8 Cultural Practices 8 Description of Measurements 9 RESULTS AND DISCUSSION 12 Tabulation of Data 12 Associations of Certain Characters 19 Heritability Analysis 24 GENERAL DISCUSSION 26 SUMMARY AND CONCLUSIONS 28 LITERATURE CITED 29 Page

LIST OF FIGURES Figure Page 1 Distribution in percentage of population across 13 internode length in millimeters for all populations of a cabbage x broccoli cross including parents, F^s, F^ and backcrosses. 2 Examples of cabbage head development in the F? of a 14 cabbage x broccoli cross. Left - form of a standard, biennial cabbage head. Middle and right - plants intermediate in head formation and bolting. 2a Split stems of Brassica oleracea showing internode 14 length. At far left is a parent cabbage plant for comparison to the others which illustrate the wide variation in F2 internode length. 3 Upper graph shows variation in internode length with 16 population means as a function of genotype. Lower graph shows bud date variation in the same manner. 4 Distribution in percentage of population across days 17 to first visible bud in annual plants in a cabbage x broccoli cross.

LIST OF TABLES Table Page 1 Minimum, maximum, mean and standard deviation values 18 for five variables and nine populations of a cabbage x broccoli cross based on individual plant data collected at Corvallis, Oregon, 1976. 2 Frequency distributions of three variables in actual 20 plant numbers and percentages for all populations involved in a cabbage x broccoli cross. 3 Chi square tests for the relationship of the formation 22 of cabbage heads to annual or biennial flowering in three populations of a cabbage x broccoli cross. 4 Chi square tests for the relationship of the degree 23 of clasping of leaves to annual or biennial flowering habit in three populations of a cabbage x broccoli cross.

INHERITANCE OF INTERNODE LENGTH, PLANT FORM AND BIENNIAL HABIT IN A CROSS OF CABBAGE (BRASSICA OLERACEA L. CAPITATA GROUP) X BROCCOLI (ITALICA GROUP) INTRODUCTION The species Brassica oleracea L. contains a number of varietal forms known collectively as the cole crops. They include: Capitata group (cabbage), Italica group (broccoli), Gemmifera group (Brussels sprout), Botrytis group (cauliflower) and Acephela group (kale and collards). With the exception of broccoli, these are biennial plants. Broccoli cultivars are annual although there is variation in earliness. Cabbage, like other biennials of the species, requires green plant vernalization for induction of flowering. Cabbage cultivars vary in the length of vernalization or chilling period required. Vernalization periods that are too short or that have been interrupted by warm temperatures have negative results on the flowering response. Buds may form but not open or flowering stalks may form without producing buds. A vernalization period that is sufficient for one cultivar may be too short for another. Of the biennials in the species, cabbage is notable in developing very short internodes during first year growth. The flowering stalk which forms after winter vernalization has long internodes. Other biennial forms, such as collards and Brussels sprout form longer internodes the first season, while cauliflower is intermediate. Broccoli forms long internodes and flowers the first year. Of all the Brassica oleracea plant forms, only cabbage has the capability to form a large central head of solidly packed thickened

2 leaves which provide a food reserve for flower stalk formation the next year. Since this ability tends to be lost when cabbages are crossed with other species forms, it is believed that a specific and unique combination of genetic factors are necessary for head forming ability. This study involves a broccoli-cabbage cross. Parents, F 1, F? and backcross progeny were grown concurrently in the field for measurement of five characters to determine their inheritance. It is hoped that the information will be of use in breeding work in cole crops. This study is an extension of previous work with cabbage x broccoli crosses done at Oregon State University.

LITERATURE REVIEW The genetics of plant form and flowering response has been studied in the varieties of Brassica oleracea for over fifty years. Cabbage In 1924 Sutton noted that bolting appeared to be a monogenic recessive characteristic in late summer plantings of cabbages. This appears to refer to a long versus a short juvenile period for induction of flowering. Detjen (1926) said that both annual flower stalk formation and cabbage head formation were simple dominant factors as demonstrated in F, and Fp progeny. Whichever factor was associated with early maturity would be the one expressed. Also in 1926, Pease developed a two gene theory for cabbage head formation. Both genes are recessive and n,n,n,,n2 is the genotype required for good head formation. He suggested that N 1 is linked to P - petiolate leaves, E - entire leaves and W - broad leaves and that N? is linked to T -tall and maybe K? - curly. While involved in tropical research, Horowitz and Perlasca reported in 1954 that annual flowering habit appeared spontaneously _3 in cabbage cultivar "Wisconsin All Season" at the rate of 5 x 10. Segratation ratios from crosses indicated one recessive gene. They postulated that a selection advantage of the heterozygote over the homozygote dominant maintained the recessive annual gene in the population. In 1963, Walkof described a mutant annual cabbage from the culti-

4 var "Morden Midget" for a single dominant gene for annual flowering habit. He found modifiers in the F.. and backcrosses and a higher frequency of annuals than expected. He further observed that some progeny of his crosses would form heads and then flower through the heads and he found some broccoli types. Lai and Solanki (1975) measured genetic variability in cabbage. They found high heritability for eight growth and habit characters in 29 cultivars. Plant spread, and head volume and weight were controlled by additive gene action, while days to head formation and maturity, and leaf number were inherited in a non-additive manner. Kryuchkov and Mamonov (1976) studied the effects of inbreeding on characters and combining ability in cabbage lines. They found that inbreeding eventually reduced the germination rate, oil content of leaves, and head weight; and increased sugar content of seeds, peroxidase activity of leaves, number of leaves per head, and percent dry matter and ascorbic acid content of heads. All F.s from lacrosses had lower values for head weight than crosses with I- or I- lines. They concluded inbreeding affects combining ability. Broccoli Legg and Lippert reported in 1966 on genetic variation in broccoli. They used expected mean squares from the analysis of variance to calculate additive and dominant gene action for nine quantitative characters. Generally, they found additive genetic variance significant and concluded that this indicated the advisa-

5 bility of mass selection in breeding programs. Sampson (1966) did research on nine qualitative genes in broccoli including petal color, male sterility, glossy foliage and others. He also worked on purple color from anthocyanin and corrected Kristofferson's original scheme by identifying a recessive gene which completely blocks anthocyanin production. In 1968, Dickson determined monogenic inheritance for eight more broccoli characters. Other Brassica In 1960, Wellensiek reported on an annual Brussels sprout. As in Walkof's work, a single dominant gene was responsible for annual habit, although, there was considerable variation regarding earliness or lateness. Whittington (1971) published results of a genetic study of hypocotyl length in Brussels sprout. A breakdown of genetic components showed that variation in hypocotyl length was due to the additive component. Iwasaki (1975) studied internode elongation in Brassica. He classified 13 species of mustards, cabbages, and kales into four types by their stem growth habit after the fourth leaf stage. During internode elongation he measured content of mono and polysaccharides, nucleic acid and lignin. No histological or histochemical differences were observed between the internode and the scape tissue in any of the four types despite obvious differences in internode elongation.

Intervarietal Crosses K. B. Kristofferson (1924) made a number of intervarietal crosses and studied F.. and F? progeny to identify the genetic schemes suggested by phenotypic frequencies. He noted the F, hybrid vigor typical of that reported by later workers and cabbage heads occurring in the F? were never equal in solidity to the cabbage parent. In 1934, Currence crossed cabbage with Brussels sprout in an effort to improve the existing crops and develop new commercially desirable types. He claimed some success at least in the former category. Almost 20 years later, Yeager (1943) described F..S resulting from intervarietal crosses of Brassica oleracea. He described the F, of cabbage x broccoli, grown in the field, as follows: These produced well-developed flower stalks two feet in length with many flower shoots. Several axillary branches near the ground. Terminals neither cabbage head nor broccoli though some resemble broccoli about one inch in diameter in their early stages and one plant bloomed. Thus his cabbage-broccoli F..S were late blooming annuals. In 1952, VanClute reported on a cross between cabbage and cauliflower which occurred at a Gill Brothers seed field near Portland. It developed a head consisting of cauliflower buds encased in cabbage leaves with heavy ribbing. Gill Brothers eventually marketed it through their seed catalog as "caulicab". Hybrid vigor was noticeable. Watts (1968) observed natural cross pollination of botanical

7 varieties of Brassica oleracea. He was able to determine parentage by F. phenotype and found that cabbage pollen seemed more effective in cross pollination than broccoli pollen. After this, Watts studied the forage potential of the various F..S utilizing the considerable vegetative hybrid vigor common in these crosses. He found that marrow stem kale crossed with broccoli or cauliflower produced the most vigorous F..S. All F,s were superior to their non-inbred parent lines. In 1971, Kagawa completed a thorough study of the types of vernalization in crucifers. He observed that the genes for seed vernalization requirement are dominant over the genes for green plant vernalization requirement and that long day vernalization is dominant over both of these. Baggett and Wahlert (1975) reported on a cabbage x broccoli cross. They found the F..S to be late annuals and the F? s to be about 43% annuals. These results were from a composite of 15 crosses. No F? plants with cabbage heads were found in 2,724 plants. Annual versus biennial habit and time of flowering in the annuals were suggested to be under control of qualitative factors with modifiers.

MATERIALS AND METHODS In the winter of 1974-75, cabbage line C70-2-1-6, inbred for six generations, was crossed with broccoli line HS124, an F 0 inbred line. o The resulting F, plants were field grown at the Oregon State Univer- sity Vegetable Crops Research Farm at Corvallis, Oregon. They were potted and removed to a greenhouse in the fall before frost damage could occur. During the winter of 1975-76, the six potted F. plants were bud self-pollinated. They were highly self-fertile and usually produced seven to ten developed seeds per silique. Similar proceed- ures were followed with the two inbred parent lines, but self incom- patability and possible sterility problems reduced seed yield. This problem was avoided to some extent by the use of bud pollination in all crosses and selfs. All pollination was done by hand by the author. In addition to the three selfs, additional reciprocal crosses of the cabbage parent with the broccoli parent were made. Reciprocal back- crosses of the F, to both parents were made. This provided nine populations, including reciprocals, seed of which were planted in a field seed bed at the Vegetable Crops Research Farm on June 3, 1976. Planting was uniform and a good stand was obtained. Seedlings were transplanted to another field on July 14,. 1976. The spacing used was 91 cm (three feet) between rows and 61 cm (two feet) between plants within rows. The field received prep!ant fertilizer at the following rates (Kg/hectare): 67.4 N, 202.2 P^, 67.4 K 2 0. Sprinkler irrigation was applied as necessary for normal growth. After recovery from

9 transplanting, dyfonate was applied as a drench to the'base of each plant to control root maggots and granular disulfoton was sidedressed to control aphids. The plants were arranged in four replications with 60 plots per replication and roughly 25 plants per plot. The number of plots for each population depended on the number of plants available in that population., i.e. the F? comprised 35 plots of 25 plants each in each replication. Measurements were taken from August until mid November for various characteristics. These included annual versus biennial flowering habit, date that flower buds were first visible on annuals, the degree of cabbage-like clasping of young leaves, the frequency of cabbage heads, and internode length. Accurate measurement of internode length involved destruction of the plant. Because of the large number to be measured, it was begun in late summer on plants which had already flowered and had been measured for all other characteristics. Internode length was determined by measuring an average of five to fifteen nodes on a section of stem. The center section of the stem was used for measurement because it was mature and had full, typical diameter. It was considered the most representative for the vegetative adult stage and was the region of least node to node variation. Below this section, the stem diameter was generally less, having been formed during seedling development. Above the section used for measurement, elongation occurred due to influence of seed stalk formation on many plants.

10 The broccoli parent used in this study was in part originally selected because of early flowering. This was done to facilitate identification of the annual progeny plants during the limited summer season at Corvallis. The relative degree of earliness of flowering of the cabbage parent was unknown. For annual plants, the day that flower buds first became visible was recorded. The field was surveyed two or three times each week, so that data would be accurate within two days. All plants were classified as either annual or biennial. By November when remaining plants had to be destroyed for internode measurements, some plants had not produced visible flower buds. At the time of internode measurement, one centimeter apical sections were bagged and labelled and placed in cold storage until they could be examined. After storage for not more than one week, the apical sections were examined under a dissecting microscope for the presence or absence of developing flower buds. Identification of cabbage type head was based on the occurrence of tightly clasping leaves and on firmness of head. Plants were classified either cabbage headed or not, as no intermediate categories were created. The degree of clasping of leaves was rated for each plant, using a one to four scoring system in which the tightly clasped cabbage parent was rated one, and the open broccoli parent was rated four. The other populations were rated relative to these standards by evaluating each plant individually. Data for the 5,562 individual plants comprising all populations

11 were transferred to computer cards for tabulation of the five characters and investigations of possible relations between them. Plot means obtained for the 240 plots were transferred to computer cards for analysis of variance. Additionally, internode length and bud date were subjected to analyses of variance to determine variation between plants within plots, analyzing each population separately. A log transformation was done on the internode data for the analysis. Warner's method was used to estimate heritability for internode length and bud date. The values used in the calculations were the variances between plants within plots. Chi square tests measured associations between the other characters.

12 RESULTS AND DISCUSSION Tabulation of Data Internode length, the character of primary interest, showed continuous variation in all populations, including the parents (Figure 1). The cabbage parent (P,) showed the least variation in total millimeters, ranging from three to eight millimeters per internode. The broccoli parent (Pp) varied from 10 to 26 millimeters per internode. Since these were both homozygous inbred lines, it seems that longer internodes allow more phenotypic variation. To compensate for this, internode length data were transformed to logs for analysis of variance. The cabbage backcross populations had a more limited range of variation than the broccoli backcross populations. Only the F_ showed a wider range of variation than the broccoli backcross populations. Two F? plants had internodes as short as the shortest cabbage parent (Figure 2); these could not be shown on the graph. Only the F, x broccoli population had plants with longer internodes than the longest found in the F?. The mean of the F? population was close to the midpoint between the two parents. The mean of the F. populations was less than the F^ midpoint. The backcrosses were biased toward their respective parents. This suggests mainly additive inheritance, with more than a few genes involved, and some dominance for short internodes being expressed in the F,.

13 BC 2 R x = D.2 Q 30 -I BCe 20 x = ]5A 10 UBCiR M x = 6.0 iu. BC, x = 6.0 1. x = 8.7 20-10- -d 1-^=10.0 4 8 12 16 20 24 MILLIMETERS 60 50i 30 20-10 x = 8.3 1 4 8 22 16 Figure 1. Distribution in percentage of population across internode length in millimeters, for all populations of a cabbage x broccoli cross, including parents, F..S, F 9 and backcrosses. (See footnote 1 Table 1, page 18.) '

14 Figure 2. Examples of cabbage head development in the F2 of a cabbage x broccoli cross. Left - form of a standard, biennial cabbage head. Middle and right - plants intermediate in head formation and bolting. Figure 2a. Split stems of Brassica oleracea showing internode length. At far left is a parent cabbage plant for comparison to the others which illustrate the wide variation in F2 internode length,

15 Another way to view these data is with a line graph of the population as in Figure 3, where the X-axis is a genetic proportion between broccoli and cabbage with broccoli predominating on the left. The Y-axis of the internode graph is in millimeters per internode. It shows the distinct difference between the reciprocal broccoli backcrosses. This apparent maternal effect might have been related to the greater vigor of the F 1 maternal parent, resulting in stronger backcross seedlings than those from the less vigorous broccoli parent. Figure 3 also shows the difference between the means of the F? and F, populations. The reason for this difference may be the same as for the broccoli backcrosses, but it may be due to partial dominance for short internode in the F,. Graphs for budding date appear in Figure 4. Reciprocal F,s were not significantly different; the means were identical and were combined. The F2 population had the widest variation with some plants budding earlier than the broccoli parent or the broccoli backcrosses. The combined F, mean was later than the F?, possibly because of partial dominance for lateness. The source of this dominance would have been the cabbage parent. This, and the fact that the other four points on the bud date line graph in Figure 3 suggest additive inheritance, provides a basis for assigning the cabbage parent a hypothetical annual bud date. Table 1 summarizes the data collected on all characteristics and all populations. Since the parents served as uniform standards for certain characteristics, they exhibit no variation for those characteristics. Because of the greater variation in actual milli-

16 100 75 BUD DATE CO >- < 50-25 BC2R BCo GENOTYPE BC,R BC, Figure 3. Upper graph shows variation in internode length with population means as a function of genotype. Lower graph shows bud date variation in the same manner. The points on the graph are in the same relative position as the labels directly below them. The symbols representing the various populations of the cabbage x broccoli cross are explained in the footnote in Table 1, page 18. In the upper graph the solid line and dots refer to millimeters and the dashed line and plus marks refer to the log scale.

17 BC R x = 90 UJ < UJ o UJ 0. I T- BC x = 37 IP i i i ;? I i I i.' : I i I i ' i * P2 x = <6 i i i i 21 01 61 81 101 121 21 41 61 81 101 121 DAYS Figure 4. Distribution in percentage of population across days to first visible bud in annual plants in a cabbage x broccoli cross, (See footnote Table 1, page 18.)

18 Table 1. Minimum, maximum, mean and standard deviation values for five variables and nine populations of a cabbage x broccoli cross based on individual plant data collected at Corvallis, Oregon, 1976.1 P BCjR l BCj F l 1 R F 2 BC 2 BC 2 R P 2 Annual/Biennia 1 Minimum 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Maximum 2.0 2.0 2.0 1.0 1.0 2.0 1.0 1.0 1.0 Mean 2.0 1.36 1.41 1.0 1.0 1.08 1.0 1.0 1.0 Std. Dev. - 0.48 0.49 - - 0.27 - - - Cabbage Head Minimum 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Maximum 2.0 2.0 2.0 1.0 1.0 2.0 1.0 1.0 1.0 Mean 2.0 1.62 1.68 1.0 1.0 1.02 1.0 1.0 1.0 Std. Dev. - 0.49 0.47 - - 0.14 - - - Leaf Clasping Minimum 1.0 1.0 1.0 1.0 1.0 1.0 2.0 3.0 4.0 Maximum 1.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Mean 1.0 1.43 1.35 2.24 2.31 3.05 3.96 3.98 4.0 Std. Dev. - 0.60 0.52 0.49 0.59 0.94 0.22 0.14 - Internode Length (mm) Minimum Maximum 3.0 3.5 3.0 6.0 6.0 3.0 8.0 6.0 10.0 8.0 12.0 15.0 12.0 17.0 28.0 32.0 26.0 26.0 Mean 5.08 6.04 5.97 8.25 8.70 10.0 15.4 13.2 16.0 Std. Dev. 0.88 1.72 1.35 1.05 1.53 3.65 4.28 3.67 2.75 Log Mean? 0.71 0.78 0.92 0.92 0.94 1.03 1.19 1.12 1.20 Log Std. Dev..020.066 i.04e >.01E i.023 AZi 5.074.07/'.030 Bud Date (days from 7-12-76) Minimum - 61 55 51 38 26 27 28-28 Maximum ; L19 120 101 95 ] L21 101 L18 72 Mean - 90.3 86.7 74.3 73.6 69.3 51.7 57.0 44.9 Std. Dev. - 12.4 13.8 7.45 8.20 17.8 12.3 14.4 8.17 Std. Dev. 3-12.6 13.1 6.6 7.8 17.6 12.1 14.6 7.8 1 Explanation of symbols: P-^ - cabbage, P2 - broccoli, Fj - cabbage x broccoli, F^R - broccoli x cabbage, BC^ - Fj x cabbage, BC^R - cabbage x Fj, BC - F^ x broccoli, BC2R - broccoli x F^. Leaf Clasping: 1 (tightly clasped) to 4 (completely open). Cabbage Head l(no head), 2(head). Flowering habit: l(annual), 2(biennial). All standard deviations are between plants within population unless otherwise noted. "Standard deviation of differences between plants within plots on log transformed data. Standard deviation of differences between plants within plots for comparison to between plants within population.

19 meters in the taller populations in internode length, a log transformation was done on the internode data before applying the Warner method for calculating heritability. These log values are included under internode data in Table 1. For annual-biennial habit, only the F?, BC. and BC,R populations show variation. All other populations were entirely composed of annuals, except P, (cabbage) which was uniformly biennial. Two plants in a broccoli backcross were very late, but were still annuals. The frequency of biennials in the F? was about eight percent, and roughly 40 percent in the cabbage backcross (Table 2). This suggests that biennial habit was recessive with more than one gene involved. For clasping of leaves of stem apex, phenotypic variation and the system of scoring place limits on the data. Overall trends can be seen. Table 2 shows the population broken down into the four scoring categories. The broccoli backcrosses more closely parallel the broccoli parent than the cabbage backcrosses parallel the cabbage parent. The F? is distinctly biased toward the broccoli parent. Only the F, suggests dominance of clasping. The F.. apical leaves tended to be cupped but never formed a tightly clasped bud. Associations of Certain Characters The frequency of cabbage heads is related to clasping leaves, since clasping is a prerequisite for heading. However, many F^ plants with tightly clasping leaves did not form heads. There were

20 Table 2. Frequency distributions of three variables in actual plant numbers and percentages for all populations involved in a cabbage x broccoli cross. Flowering Leaf. Cabbage Habit Clas ping Heads Annual Biennial I 2 3 4 Heads No Heads p No. 0 199 199 0 0 0 199 0 l % 0 100 100 0 0 0 100 0 BCjR No. 60 34 58 33 2 1 58 36 % 64 36 62 35 1 0 62 38 BC 1 No. 473 334 539 256 9 3 550 257 % 59 41 67 32 1 0 68 32 F l No. 221 0 1 171 44 5 0 221 % 100 0 0 77 20 2 0 100 R No. 254 0 1 190 47 16 0 254 F 1 F 2 % 100 0 0 75 19 6 0 100 No. 3010 250 171 831 916 1342 70 3190 % 92 8 5 25 28 41 2 98 BC 2 No. 381 0 0 2 11 368 0 381 % 100 0 0 1 3 97 0 100 BC 2 R No. 198 0 0 0 4 194 0 198 % 100 0 0 0 2 98 0 100 P 2 No. 148 0 0 0 0 148 0 148 % 100 0 0 0 0 100 0 100 1 - tightly clasped, 2 - loosely clasped, 3 - mostly open, 4 - completely open.

21 171 tightly clasping plants but only 70 cabbage heads.- Examples can be seen in Figure 4. This situation did not occur in the cabbage backcrosses where some plants which did not exhibit tightly clasping leaves earlier in the season later formed heads. Forty-six percent of the heads in the F? and combined BC, populations were annuals. Fp heads classified as heading were not of the commercial type because they lacked size and solidity. Some of the cabbage backcross plants had heads of commercial size but only a small number of these were as solid as the cabbage parent. The absence of cabbage heads in the F, and broccoli backcrosses and the low frequency in the F^ indicate that cabbage head forming ability is recessive and multigenic. The data for cabbage head forming ability and one of its components, tightly clasping leaves, were compared to various genetic ratios, but no good fit was found. The inheritance of these characters is probably quantitative in nature so simple genetic ratios should not be expected. Relationships, determined by the Chi square (X ) tests, between cabbage heading and biennial habit as well as between clasping leaves and biennial habit are shown in Tables 3 and 4. Significant Chi square values indicate an association between biennial habit and these two characteristics, especially with cabbage heading where very high values were obtained. This can be explained by some degree of linkage between the genes for biennial habit and the genes for formation of cabbage heads.

Table 3. Chi square tests for the relationship of cabbage head formation to annual or biennial flowering in three populations of a cabbage x broccoli cross. 22 Observed Expected Head No Head Head No Head Total X Annual 32 2978 64.6 2945.4 3010 Biennial 38 212 5.4 244.6 250 Total 70 3190 70 3190 3260 218** F 1 x cabbage Annual 250 223 322.4 150.6 473 Biennial 300 34 227.6 106.4 334 Total 550 257 550 257 807 123** Cabbage x F, Annual 31 29 37 23 60 Biennial 27 7 21 13 34 Total 58 36 58 36 94 1 degree of freedom

Table 4. Chi square tests for the relationship of the degree of clasping of leaves to annual or biennial flowering habit in three populations of a cabbage x broccoli cross. r 2 1 1 Observed l2< ;pected I 2 3 4 Total Annual Biennial Total 129 753 865 1265 42 78 53 77 171 831 918 1342 158 767 848 1239 3012 13 64 70 103 250 171 831 918 1342 3262 85.0 ** F. x cabbage Annual 295 168 8 2 315.9 150 5.3 1.8 473 Biennial 244 88 1 1 223.1 106 3.7 1.2 334 Total 539 256 9 3 539 256 9 3 807 12.5^ Cabbage x F, Annual Biennial Total 32 25 2 1 37 21.1 1.3 0.6 26 8 0 0 21 11.9 0.7 0.4 58 33 2 1 58 33 2 1 60 34 94 5.1 1 Degree of clasping: 1 - tightly clasped, 2 - loosely clasped, 3 open. 3 degrees of freedom. mostly open, 4 - completely

24 Heritability Analysis Internode length and bud date appeared to be quantitative characters and the analyses were approached accordingly. Warner's method of estimating heritability (1952) was designed to handle continuous data such as that collected for both internode length and bud date. After a log transformation, the internode data was subjected to the Mather and Jinks scaling tests (1971) to see if the Warner method was appropriate. All three scaling tests were met. Bud date data met the tests, but the missing cabbage parent values meant that the calculations were not strictly valid. Warner uses three formulas in his method of estimating heritability. The third formula is derived from the first two. V u F 2 0 = JgD + %H + E BC u '2 0 BCo = hd + hh + 2E ^2 JsD = 2V, - (V Dr + V Dr ) To BC-i BC<- D represents additive variance, H represents non-additive variance and E represents environmental variation. kp represents the heritable portion of the F? variation. Dividing ^D by the total F variation gives an estimate, in percent, of the heritability of the character in question. This method indicates that internode length is 95.2% heritable and that bud date is 88.7% heritable in the narrow sense. This indicates that the inheritance is predomin-

25 antly additive. Supplementing Warner's method with a formula used to estimate environmental variance, E 3 is a way of solving for %H or the nonadditive portion of the F? variation. For internode length the log value was -.017 and for bud date the value was -22. Since these are both negative values, the nonadditive portion of the F? variation is considered to be zero. Bud date data was analyzed by the Warner method using both sets of standard deviation values in Table 1. They gave the same result. This and the similarity of the between plant within plot and between plant within population standard deviations indicates there was little plot to plot variation.

26 GENERAL DISCUSSION Annual or biennial habit seemed to be controlled by a number of genes according to this study. This differs from other work where monogenic mutations have occurred within cabbage cultivars, changing them to annuals. The frequencies also differ with previous results from broccoli-cabbage crosses by Baggett and Wahlert (1975). Their percentage of annuals in the F? was 43 versus 92 here. This work concerns one cross while theirs was a composite of 15 crosses. They suggested their progenies were not planted early enough and the season was not long enough for expression of all annuals. In the present study, the broccoli parent was chosen for earliness to permit maximum expression of annual character within the Corvallis growing season. Examining apices for flower buds in the laboratory may account for a small portion of the difference. Kagawa also concluded that biennial habit was recessive to annual and suggested polygenic inheritance. Perhaps there are one or more major factors operating in conjunction with a number of modifiers. A single major gene may not be present in all cabbage germ plasm. Or, there may be weaker alleles working in association with modifiers to produce biennial habit. A series of alleles would be one possible explanation for the varying amounts of vernalization necessary to produce flowering in different lines of commercial cabbage. Assuming that a number of modifiers are present, they should have segregated to various proportions in the F? populations, leaving

27 some plants with a very slight vernalization requirement. Collecting bud date data into the first part of November might be thought to result in classifying some weak biennials as annuals. However, this does not seem likely as the fall of 1976 was warm in the Willamette Valley. Good chilling temperatures were not attained until the latter half of October. Also, warmer daytime temperatures would have neutralized night chilling as demonstrated by Heide (1970). Therefore the segregating Fp population tended to have very few biennials. Previous work suggests that cabbage head forming ability results from a special combination of genetic factors. The results of this study reinforce this suggestion. Only about two percent of the F population formed heads, and only about half of them were biennials. The characteristic of clasping leaves, a component in the formation of cabbage heads, appeared multigenic. Cabbage head formation requires even more factors. Also, cabbages have biennial habit which appears multigenic and recessive. Together these genetic systems produced only 38 cabbage headed biennials out of 4,260 plants. These numbers illustrate the unique association of genes required to produce the cabbage phenotype.

28 SUMMARY AND CONCLUSIONS None of the five characters studied behaved according to simple Mendelian ratios. If any of the characters were governed by a few major genes, then modifiers must have obscured simple ratios. Internode length distribution was continuous. Additive inheritance was predominant, but a relatively small amount of non-additive inheritance was suggested by Figure 3. Bud date or earliness in the annual plants also was governed primarily by additive inheritance. The F. data suggests partial dominance for lateness, but this was not supported by the F. Tightly clasping, cabbage type leaves appeared to be recessive to the open, broccoli type. This was most clearly suggested by the F data. Cabbage head forming ability was recessive and appeared to involve a number of factors. Annual flowering was dominant over biennial habit. The F? data suggested that a number of genes were involved since only eight percent were biennials. Clasping leaves, cabbage head forming ability and biennial habit are all part of the cabbage phenotype and are interrelated. Clasping leaves is a component of cabbage head forming ability and Chi square tests showed that both of these characters were associated genetically with biennial habit.

29 LITERATURE CITED Baggett, J. R.: Wahlert, W. K. 1975. Annual flowering and growth habit in cabbage-broccoli crosses. HortScience 10:170-72. Burton, G. W. 1951. Quantitative inheritance in pearl millet (Pennisetum glaucum). Agronomy Journal 43:409-17. Currence, T. M. 1934. Results from hybridizing cabbage with Brussels sprout. Proc. ASHS 32:485-87. Detjen, L. R. 1926. A preliminary report on cabbage breeding. Proc. ASHS 23:325-32. Dickson, M. H. 1968. Eight newly described genes in broccoli. Proc. ASHS 93:356. Heide, 0. M. 1970. Seed stalk formation and flowering in cabbage. 1. Day-length, temperature and time relationships. Meld. Norg. Landbr. Hgsk. 9:1-21. Horowitz, S. and G. Perlasca. 1954. Genetics of normal flowering of cabbage in the torrid tropics. Agronomia Tropical 4:81-93. Iwasaki, F. 1975. Studies on bolting in Brassica. VII. Morphological and histochemical observations on internode elongation. Journal of the Japanese Society for Horticultural Science 44:22-32. Kagawa, A. 1971. Studies on the genetics of flowering response in cruciferous vegetables. Research Bulletin of the Faculty of Agriculture, Gifu University No. 31, 41-52. Krisofferson, K. B. 1924. Contributions to the genetics of Brassica oleracea. Hereditas 5:297-364. Kryuchkov, A. B.; Mamomov, E. V. 1976. The effects of inbreeding on characters and combining ability in cabbage lines. Doklady TSKhA No. 216, 148-52. Lai, S. D., Solanki, S. S. 1975. Genetic variability in cabbage (Brassica oleracea L. var. capitata). Progressive Horticulture 7:53-62. Legg, P. D. and L. F. Lippert. 1966. Genetic variation in openpollinated varieties of broccoli (Brassica oleracea var. italica). Proc. ASHS 88:411-16.

30 Mather, K. and J. L. Jinks. 1971. Bibmetrical Genetics. Ithaca, N. Y.: Cornell University Press. Pease, M. S. 1926. Genetic studies in Brassica oleracea. Journal of Genetics 16:363-85. Sampson, D. R. 1966. Genetic analysis of Brassica oleracea using nine genes in sprouting broccoli. Canadian Journal of Genetics 8:404. 1967. New light on complexities of anthocyanin inheritance in Brassica oleracea. Canadian Journal of Genetics 9:352. Sutton, E. P. F. 1924. Inheritance of bolting in cabbage. Journal of Heredity 15:257-60. Van Clute, J. 1952. Calulicab is a new vegetable. Southwestern Crop and Stock 6:38-39. Walkof, C. 1963. Mutant annual cabbage. Euphytica 12:77. Warner, J. N. 1952. A method for establishing heritability. Agronomy Journal 44:427-30. Watts, L. E. 1968. Natural cross pollination and identification of hybrids between botanical varieties of Brassica oleracea L. Euphytica 17:74. 1970. Productivity of F-L hybrids of botanical varieties of Brassica oleracea L. Euphytica 19:398-404. Wellensiek, S. J. 1960. Annual Brussels sprouts. Euphytica 9:10-12. Whittington, W. J. 1971. Genetic variation of hypocotyi length in the Brussels sprout. Annals of Botany 35:345-51. 1973. Hypocotyi length in Brussels sprout as a varietal character. Journal of Agricultural Science 81:263. Yarnell, S. H. 1956. Cytogenetics of the vegetable crop II. Crucifers. Botanical Review 22:81-166. Yeager, A. F. 1943. The characteristics of crosses between botanical varieties of Brassica oleracea L. Proc. ASHS 43:199-200.