Walnut Pollination Dynamics: Pollen Flow in Walnut Orchards

Similar documents
Pecan Pollination. Dr. Patrick Conner University of Georgia, Horticulture Department

COMPARISON OF BLACKLINE RESISTANT AND CONVENTIONAL ENGLISH WALNUT VARIETIES

Using Growing Degree Hours Accumulated Thirty Days after Bloom to Help Growers Predict Difficult Fruit Sizing Years

Progress Report on Avocado Breeding

Agriculture & Natural Resources

Flowering and Fruiting Morphology of Hardy Kiwifruit, Actinidia arguta

Keywords: Prunus domestica, pollination, pollen germination, pollen tube growth, fruit set, temperature

COMPARISON OF BLACKLINE-RESISTANT AND CONVENTIONAL WALNUT VARIETIES IN THE CENTRAL COAST

THE EFFECT OF GIRDLING ON FRUIT QUALITY, PHENOLOGY AND MINERAL ANALYSIS OF THE AVOCADO TREE

Pecan Production 101: Sunlight, Crop Load Management, Pollination. Lenny Wells UGA Extension Horticulture

THE EVALUATION OF WALNUT VARIETIES FOR CALIFORNIA S CENTRAL COAST REGION 2007 HARVEST

Temperature effect on pollen germination/tube growth in apple pistils

AVOCADO GENETICS AND BREEDING PRESENT AND FUTURE

Fungicides for phoma control in winter oilseed rape

VEGETATIVE FLUSHING AND FLOWERING OF MACADAMIA INTEGRIFOLIA IN HAWAII

Pollination of Vegetable Crops

The floral biology of the olive 11. The effect of inflorescence load and distribution per shoot on fruit set and load

FLOWERING BEHAVIORS OF TAIWAN AVOCADO CULTIVARS

Influence of Cultivar and Planting Date on Strawberry Growth and Development in the Low Desert

Regression Models for Saffron Yields in Iran

SELF-POLLINATED HASS SEEDLINGS

Big Data and the Productivity Challenge for Wine Grapes. Nick Dokoozlian Agricultural Outlook Forum February

THE EFFECT OF ETHYLENE UPON RIPENING AND RESPIRATORY RATE OF AVOCADO FRUIT

Percentage Fruit Set In Avocados (Persea Americana Mill.)

Missing value imputation in SAS: an intro to Proc MI and MIANALYZE

Monte L. Nesbitt Texas A&M AgriLife Extension Service. Pecan varieties, pollination & spacing

Chapter V SUMMARY AND CONCLUSION

Relationship between Mineral Nutrition and Postharvest Fruit Disorders of 'Fuerte' Avocados

EFFECTS OF HIGH TEMPERATURE AND CONTROLLED FRUITING ON COTTON YIELD

EFFECT OF TOMATO GENETIC VARIATION ON LYE PEELING EFFICACY TOMATO SOLUTIONS JIM AND ADAM DICK SUMMARY

Calvin Lietzow and James Nienhuis Department of Horticulture, University of Wisconsin, 1575 Linden Dr., Madison, WI 53706

Colorado State University Viticulture and Enology. Grapevine Cold Hardiness

RELATIONSHIP BETWEEN TEMPERATURE IN OCTOBER AND NOVEMBER AND YIELD

Elderberry Ripeness and Determination of When to Harvest. Patrick Byers, Regional Horticulture Specialist,

Hass Yield and Fruit Size as Influenced by Pollination and Pollen Donor a Joint Progress Report

Do the Kanza and Excel pecan cultivars have a place in Georgia orchards?

Buying Filberts On a Sample Basis

Is fruit dry matter concentration a useful predictor of Honeycrisp apple fruit quality after storage?

A new approach to understand and control bitter pit in apple

NEW ZEALAND AVOCADO FRUIT QUALITY: THE IMPACT OF STORAGE TEMPERATURE AND MATURITY

Fungicides for phoma control in winter oilseed rape

Effect of Pruning Severity and Branch Quality on Fruit Set and Fruit Dry Weight of Packham s Triumph Pears (Pyrus communis L.)

Wine-Tasting by Numbers: Using Binary Logistic Regression to Reveal the Preferences of Experts

Research Progress towards Mechanical Harvest of New Mexico Pod-type Green Chile

Evaluation of the effect of complementary pollination on Actinidia deliciosa CV. Hayward in northwest Portugal

7. LOCALIZATION OF FRUIT ON THE TREE, BRANCH GIRDLING AND FRUIT THINNING

2007 RETAIN RESEARCH RESULTS AND MANAGEMENT OF SCALES INFESTING WALNUTS

D Lemmer and FJ Kruger

FRUIT GROWTH IN THE ORIENTAL PERSIMMON

Observations and thoughts on resistance of corn to Ustilago maydis

Avocado Productivity: Pollination, Pollenizers, Fruit Set and Abscission.

THE CALIFORNIA CROSS POLLINATION EXPERIMENT A PROGRESS REPORT ON THE INFLUENCE OF POLLINIZER VARIETY AND PROXIMITY ON HASS YIELD

STUDY AND IMPROVEMENT FOR SLICE SMOOTHNESS IN SLICING MACHINE OF LOTUS ROOT

Psa and Italian Kiwifruit Orchards an observation by Callum Kay, 4 April 2011

Walnut Rootstock Selection. Joe Grant Farm Advisor UC Cooperative Extension San Joaquin County

MONTHLY COFFEE MARKET REPORT

IMPACT OF RAINFALL PRIOR TO HARVEST ON RIPE FRUIT QUALITY OF HASS AVOCADOS IN NEW ZEALAND

Physiology, Orchard Establishment, Cultivars, Training/Pruning. Lenny Wells UGA Extension Horticulture

Morphological Characteristics of Greek Saffron Stigmas from Kozani Region

Determination of Fruit Sampling Location for Quality Measurements in Melon (Cucumis melo L.)

Joseph G. Alfieri 1, William P. Kustas 1, John H. Prueger 2, Lynn G. McKee 1, Feng Gao 1 Lawrence E. Hipps 3, Sebastian Los 3

Seientia Horticulturae, 18 (1982/83) Elsevier Scientific Publishing Company, Amsterdam -- Printed in The Netherlands

Corn Growth and Development

21/06/2009. Metric Tons (000) '95 '96 '97 '98 '99 '00 '01 '02 '03 '

PROBATION AND FOUNDATION PLOT PRODUCTION OF CANOLA, MUSTARD, RADISH, RAPESEED, SAFFLOWER, AND SUNFLOWER

PERFORMANCE OF HYBRID AND SYNTHETIC VARIETIES OF SUNFLOWER GROWN UNDER DIFFERENT LEVELS OF INPUT

Effects of Drying and Tempering Rice Using a Continuous Drying Procedure 1

INFLUENCE OF THIN JUICE ph MANAGEMENT ON THICK JUICE COLOR IN A FACTORY UTILIZING WEAK CATION THIN JUICE SOFTENING

ANALYSIS OF CLIMATIC FACTORS IN CONNECTION WITH STRAWBERRY GENERATIVE BUD DEVELOPMENT

Response of 'Hass' Avocado to Postharvest Storage in Controlled Atmosphere Conditions

2016 China Dry Bean Historical production And Estimated planting intentions Analysis

INFLUENCE OF ENVIRONMENT - Wine evaporation from barrels By Richard M. Blazer, Enologist Sterling Vineyards Calistoga, CA

Evaluation of desiccants to facilitate straight combining canola. Brian Jenks North Dakota State University

EVALUATION OF AIRLEG SORTING. Kathy Kelley, Bill Olson, Steve Sibbett, Ron Snyder

Effect of paraquat and diquat applied preharvest on canola yield and seed quality

Final Report to Delaware Soybean Board January 11, Delaware Soybean Board

Chile. Tree Nuts Annual. Almonds and Walnuts Annual Report

Proceedings of The World Avocado Congress III, 1995 pp

Retailing Frozen Foods

HARVESTING MAXIMUM VALUE FROM SMALL GRAIN CEREAL FORAGES. George Fohner 1 ABSTRACT

Hybrid Seeds Production

Effect of paraquat and diquat applied preharvest on canola yield and seed quality

2005 Research: Monitoring, Sanitation, and Insect Pest Management in Figs

Pollinating almonds: how many bees do you need?

Peach and Nectarine Cork Spot: A Review of the 1998 Season

1. Title: Identification of High Yielding, Root Rot Tolerant Sweet Corn Hybrids

Further investigations into the rind lesion problems experienced with the Pinkerton cultivar

Development of Host-Plant Resistance as a Strategy to Reduce Damage from the Major Sunflower Insect Pests

Why and How to Save Seed: Wet Seed Saving Ethics and Techniques

EFFICACY STUDIES ON PREBLOOM CANOPY APPLICATIONS OF BORON AND/OR UREA TO 'HASS' AVOCADOS IN CALIFORNIA

Study of self-incompatibility in some Iranian olive cultivars

Effects of Preharvest Sprays of Maleic Hydrazide on Sugar Beets

Journal of Fruit and Ornamental Plant Research Vol. 15, 2007: 35-40

Online Appendix to Voluntary Disclosure and Information Asymmetry: Evidence from the 2005 Securities Offering Reform

Evaluating Hazelnut Cultivars for Yield, Quality and Disease Resistance

Labor Requirements and Costs for Harvesting Tomatoes. Zhengfei Guan, 1 Feng Wu, and Steven Sargent University of Florida

WALNUT HEDGEROW PRUNING AND TRAINING TRIAL 2010

Thermal Hydraulic Analysis of 49-2 Swimming Pool Reactor with a. Passive Siphon Breaker

REPRODUCTIVE BIOLOGY IN POA ANNUA L. A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA. Bridget Anne Ruemmele

Quadrilateral vs bilateral VSP An alternative option to maintain yield?

Transcription:

Walnut Pollination Dynamics: Pollen Flow in Walnut Orchards VS. Polito, K. Pinney and S. Weinbaurn Department @1 Porno logy Liniversity of Ca] ilornia Davis Davis. California USA J. Dangl Foundation Plant Services University of California Davis Davis, California, LISA J.A. Grant University of California Cooperative Extension Stockton, California USA M.K. Aradhya USDA National Clonal Germplasm Repository University of California Davis Davis, California LISA Y. Vaknin Agricultural Research Organization Institute of Field and Garden Crops Volcani Center Bet Dagan Israel Keywords: Jug/cis /eg/a, pollination, outcrossing, microsatellite. SSR. PFA, dichogamy Abstract We have been conducting analyses of pollination dynamics in a California 'Chandler' walnut (Jtiglans regia) orchard. Our objectives are to document effective sources of pollen during the dichogamous bloom cycle of the two cultivars present in the orchard by determining pollen parentage of nuts, to describe the bloom phenology and to develop recommendations on pollinizer requirements in walnut orchards consistent with management of blackline disease and pollen-induced pistillate flower abortion (PFA). Trees are spaced at 28.5m. Prevailing winds are from the north and west. The orchard has 'Cisco' pollinizers every fourth row along the north and west outside rows of the orchard and there is a single 'S. Franquette' tree on the east edge. Other potential pollinizers are approximately a kilometer distant. We are analyzing pollen flow by conducting paternity analyses using microsatellite (SSR) DNA markers on nuts collected from trees at various distances from the pollinizer rows. Our results for 21 are based on nuts harvested from flowers tagged at two bloom dates. The results show much higher than expected levels of pollen parentage originating from sources outside the orchard (i.e. neither self pollen, 'Cisco' pollen nor 'S. Franquette' pollen). During Chandler staminate lull bloom, when copious amount of self pollen is present in the orchard, high levels of non-self paternity occur at the upwind portions of the orchard. For 22, we expanded our level of temporal resolution by tagging flowers 8 times over the bloom cycle. SSR-based paternity anal yses of approximately 9 nuts identified according to bloom date and orchard location again show high levels of paternity from sources outside the orchard. Because we cannot exclude 'Chandler' or'cisco' pollen from sources outside the orchard, it is likel y that our estimates of pollen from distant external sources is significantly higher than the data would indicate. INTRODUCTION Pollination requirements in walnut orchards are inadequately understood. Pollination relationships in this species are more complex than is typical of other orchard crops. The species is self compatible, however because it is also dichogamous, the period of overlap between pollen shed and pistillate flower receptivity may be inadequate for maximum productivity. Although there are no data on the relationship between pollen Proc. ml. Walnut Syrup. Eds. M.E. Malvolti and D. Avanzato 465 Acta i-ion. 75, ISHS 26

load and walnut fruit set, we do know that excess causes pistillate flower abortion (PFA) (McGranahan, et al., 1994 Polito et al., 1996). In addition, CLRV-W, the viral agent that incites walnut blackline disease, is transmitted by pollen. This uniquely complex pollination situation makes it essential that we know more about key parameters of walnut pollination. Unanswered questions address the basic reproductive biology of walnut as well as practical horticultural issues: How far does pollen travel in this wind-pollinated species? What are the limits of pollen load including the minimum necessary for fruit and nut set and the upper threshold that begins to trigger PFA? What is the role of the dichogamy cycle in pollen load! Is there a requirement for interplanting pollinizer cultivars to ensure adequate pollen load during the period when self pollen is not present? If, so how many pollinizers are adequate and what is the optimum orchard configuration to provide sufficient, but not excessive, pollen loads? To what extent does pollen from outside the orchard, present in any walnut growing area, contribute to fruit set? Our objectives are to begin addressing these questions by determining patterns of pollen flow, viable pollen deposition on stigmas, and paternal inheritance in walnut orchards as they vary with distance from pollen source and with time during the dichogamous bloom cycle. We are using molecular genetic inheritance techniques to determine temporal and spatial patterns of pollen flow in an orchard. MATERIALS AND METHODS We are working in a 'Chandler' orchard at 8.5m x 8.5m spacing. There are 'Cisco' pollinizers planted every fourth row along the north and west sides of the orchard. At the south edge of the orchard there is a single 'S. Franquette' tree in an adjacent 'Serr' orchard. East of the 'Serr' orchard is a 'Tehama' block. The nearest orchard with 'Chandler' or late-blooming pollinizer cultivars is approximately a kilometer distant. This presents a situation where the primary pollen sources in the orchard itself are well understood. We conducted experiments in this location in 21 and 22. In 21 we tagged flowers on the Chandler trees along transects 1, 2, 4, 8 and 16 tree rows moving south. away from the Cisco pollinizers and transects 1, 2, 4 and 8 tree row's north of the 'S. Franquette'. We tagged pistillate flowers at a pre-receptive stage on two dates: April 13, at which time 'Chandler' was in full staminate bloom and no catkins had opened on the 'Cisco' pollinizers or the 'S. Franquette' tree and April 24, when 'Chandler' staminate bloom was 95% complete and 'Cisco' was in full staminate bloom and the earliest catkins had begun to shed pollen on the 'S. Franquette.' In 22 we selected eight separate limbs each on 'Chandler' trees I, 2, 4 8 and 16 rows from 'Cisco' trees. Every three to four days throughout the bloom cycle newly emerged pistillate flowers and catkins were tagged. Every flower and catkin on each limb was tagged noting time of bloom emergence on the pistillate flowers and time of pollen shed for the catkins. Tagging dates were: 12, 16. 19, 22, 25, 29 April and 3, 9 May. Receptive pistillate flowers on adjacent flowers were collected to determine pollen load on each tagging date. PFA and total fruit drop was determined for the tagged flowers. Microsatellite (SSR) markers were used to determine pollen parentage of representative nuts. RESULTS AND DISCUSSION In 22 we analyzed male and female bloom phenology. Figs I and 2 show pollen shed phenology for Chandler and Cisco and the proportion of Chandler to Cisco pollen available in the orchard during the bloom period. Fig 3 shows the pattern of emergence of Chandler pistillate bloom in 22. The reduced number of flowers opening between 14 and 19 April is correlated with low temperatures during this period (Fig. 4.). Early flower drop, likely due to pollen-induced pistillate flower abortion (PFA). was high during the early bloom period (6% of the flowers that bloomed in that period), however few flowers (<5% of total bloom) were open during that time. Subsequent PFA 466

was approximately 2% during the period of full staminate bloom, and then fell to approximately 1% (Fig. 5) as 'Chandler staminate bloom ended (Fig. 5). Fruit set, throughout the bloom period, was negatively correlated to PFA (n = 8, r = -.89, P =.3). The PFA results are consistent with pollen load determinations (Fig. 7) and previous findings showing strong positive correlations between pollen load and PFA. At harvest we determined fresh weight of nuts. These results are seen in Fig 8. Late blooming flowers produce significantly smaller nuts than early and mid bloom flowers Ṫhe SSR markers we used to determine paternity were selected to differentiate the cultivars present in the orchard ('Chandler' and 'Cisco') and common in the area at the time of 'Chandler' bloom ('Franquette'). We also included 'Tehama' in our analyses because that is the cultivar grown in the adjacent orchard on the downwind side although staminate bloom in this cultivar is complete prior to 'Chandler' pistillate bloom. Outcrossing analysis (Ritland, 199) for 21(Fig. 9) indicates that for Chandler flowers tagged at the pre-receptive stage during full staminate bloom 1' Chandler (13 April) 8.5 in from the northern edge of the orchard, approximately 5% of nuts result from non-self crosses. This falls off to less that 2% one additional tree row distance (17 m) into the orchard and to 2-3% beyond that. Thus, despite the high levels of self pollen available in the orchard, there is a contribution at the edges greater than one might expect from bloom conditions in the orchard. For the second tagging period. 24 April, outcrossing rates exceeded 75% through 4 tree rows (34 in) and remained over 4% as far as 156 m from the pollinizer rows. Results from 22 are shown in Table 1. Several clear trends emerge from these data. Data for 12 April are not included. There were only II nuts and all had 'Chandler' as the pollen parent. By 16 April 'Cisco' parentage began to become apparent. Cisco's contribution to pollen parentage increased with time. However, there was a strong trend of reduced 'Cisco' parentage with distance from the pollinizer row. At distances from 34 in and greater, 'Cisco' parentage was similar to that of other sources including 'Franquette.' This indicates that the contribution of the pollinizers in the orchard have little effect beyond 4 to 8 orchard rows. A second trend is that the role of 'Chandler' as a pollen parent extends well beyond the time that would be predicted from the phenology of staminate bloom. From 25 April. when Chandler staminate bloom had dropped to very low levels relative to Cisco (Fig. I) there was strong effect of Chandler pollen, especially at distances greater than 34 in the Cisco pollinizers. Thus, while there is an important contribution from the Cisco pollinizers for trees within 17 iii, the value of having these pollinizers appears minimal as there is sufficient self pollen and pollen from outside the orchard available to set fruit be yond the influence of the Cisco pollinizers. These results suggest some tentative conclusions. One is that the contributions from individual trees do not appear to extend distances greater than approximately 3 m. In this range the contributions of pollen originating from the 'Cisco' pollinizers falls oft to levels that do not appear to differ from that of cultivars not present in the subject orchard. It is reasonable to assume that some portion of' the 'Cisco' parentage we fiuicl at these distances comes from sources outside the orchard as well, as 'Cisco' is a common pollinizer in 'Chandler' orchards in the area. Thus, the contribution from the orchard pollinizer trees is somewhat less than that indicated in the table 1. This conclusion suggests that in walnut-growing areas, large amounts of airborne pollen are naturally present. What then is the significance of this conclusion for managing PFA and walnut blackline disease? Maintaining minimal losses to pollen-induced pistillate flower abortion is best achieved by minimizing pollen levels in the orchard to no more than that required for fruit set. The present results suggest that this can be done by removing pollinizers as their contribution to fruit set appears to he redundant to other, existing sources and they increase pollen loads in adjacent tree rows. Where blackline disease is prevalent, however, the fact that there is an influx Of pollen from sources outside the orchard could lead to infection by blackline virus in orchards that are free of the virus. In these 467

situations there may be an advantage to regular spaced pollinizer rows to supply uninfected pollen at elevated levels sufficient to outcompete potentially infected pollen from outside the system. ACKNOWLEDGEMENTS We acknowledge with thanks the financial support of the California Walnut Board. Literature Cited McGranahan, G.H., Voyiatzis, D.G., Catlin, P.B. and Polito, V.S. 1994. High pollen loads can cause pistillate flower abscission in walnut. J. Amer. Soc. Hortic. Sci. 119:55-5O9. Polito, V.S., Sibbett, S., Grant, J., Kelley, K. and Catlin, P. 1996. Pistillate flower abortion and pollination management in walnut orchards. In. Walnut Orchard Management, D. Ramos (Ed.) Ritland; K. 199. A series of FORTRAN computer programs for estimating plant mating systems. Journal of Heredity 81: 235-237. 468

Tables Table I. Paternity of 'Chandler' nuts inferred from SSR markers for bloom date of flower and distance from 'Cisco' pollinizer row. Analysis based on assumption of self ('Chandler'), 'Cisco,' 'S. Franquette' or 'Tehama' pollen parent. Paternal Parent (Number of Nuts) Calendar Julian Dist Date Date (m) Chand. Cisco Frang. Tehama Other* 16-Apr 16 8.5 17 16-Apr 16 17 29 6 3 16-Apr 16 34 8 I 1 2 16-Apr 16 68 28 1 I 5 16-Apr 16 136 26 3 2 19-Apr 19 8.5 3 12 19-Apr 19 17 14 7 1 1 4 19-Apr 19 34 7 6 5 19-Apr 19 68 13 1 3 19-Apr 19 136 11 1 1 2 22-Apr 112 8.5 8 21 1 1 6 22-Apr 112 17 12 31 17 22-Apr 112 34 6 14 2 8 22-Apr 112 68 35 13 2 19 22-Apr 112 136 28 7 9 25-Apr 115 8.5 6 28 4 9 25-Apr 115 17 8 28 4 8 25-Apr 115 34 1 15 7 5 25-Apr 115 68 12 15 6 18 25-Apr 115 136 12 4 5 7 29-Apr 119 8.5 3 9 3 29-Apr 119 17 1 1 29-Apr 119 34 7 2 1 3 29-Apr 119 68 1 5 2 29-Apr 119 136 5 3-May 123 8.5 2 8 2 2 3-May 123 17 3 1 1 3-May 123 34 2 3-May 123 68 2 5 1 3-May 123 136 8 5 9-May 129 8.5 3 8 2 4 9-May 129 17 1 9-May 129 34 1 5 1 7 9-May 129 68 2 2 9-May 129 136 1 I 'Nuts with multiple markers for outcrossing and genetic profiles inconsistent with Chandler, Cisco, Franquettc or Tehama paternity. 469

Figures I. p 6o ' r--' -)--,r - 4---.--C,-.-coco 3 L2" to loo /19/2 4/74/2 4/29/2 5/4/2 5/9/2 5/1412 51P9/2 o.te Fig. 1. Catkin shed by Chandler and Cisco during the 22 bloom cycle. L ----.---.-_ -----.----- oviw ovioo2 4,242 4(242 9O2 Dft Fig. 2. Relative amounts of Chandler and Cisco pollen in the orchard during the 22 bloom cycle. 3 ------- 25-b-- 2 2 - -- 2 15-4------------------ --------- 4/9/2 4114/2 4/19/2 412412 4129/2 /4/2 5/2 5/1412 5/19/2 49/ %94) 9/54194292)99(48148 2 (2 (2 (2 2 (2 (2 (2 2 We Fig. 3. Pattern of emergence of Chandler pistillate bloom in 22. Fig. 4. Mean daily temperatures (C) for 22 Chandler bloom period. 8 / \ I 1 PFA.--.----. \. Fruo 94 8 Co 4) ) 4)9 3-- 4 o = L4 ) Co E 2 /2-. /3 15 11 115 12 125 13 Julian Date (22) Fig. 5. Chandler PFA and fruit set in 22 for flowers tagged throughout the bloom cycle. 47

Ilk 25 CD E.2)2 (I) I.- ci, OL 15 Cl) CD 3 ) 1 C ci a. 5 - U April 19 April 22 A April 25 -- April 29 May3 Art 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 1t Distance from 'Cisco' (tree no.) Fig. 6. Number of pollen grains per stigma during the Chandler bloom period and along distance transects from the Cisco pollinizers. 3 25 C 2-15 -o 1 E z 5 85 17 34 68 136 Julian Date Fig. 7. Pollen load on 'Chandler' flowers. 471

6 IL 3...... ).. q q q ( ) C\1 1) C) ) c\1 ('q rv o Flowering Date Fig. 8. Fresh weight of nuts developing from flowers from different bloom dates. 1 8 C) (I, U) 6 4 o 2 2 4 6 8 1 12 14 Distance from Pollinizer (m) Fig. 9. Outcrossing rates for 'Chandler' trees with distance from 'Cisco' pollinizers (21). Flowers were tagged at a pre-receptive stage prior to 'Cisco' staminate bloom (13 April) and after 'Chandler' staminate bloom (24). Ritland MLTR analysis. 472