Effects of Carbon Dioxide Treatment and Modified Atmosphere Packaging on the Quality of Long Distance Transporting Maehyang Strawberry

Similar documents
Development of Value Added Products From Home-Grown Lychee

Comparison of Two Commercial Modified Atmosphere Box-liners for Sweet Cherries.

Forestry, Leduc, AB, T9E 7C5, Canada. Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada. *

Melon Quality & Ripening

Tomato Quality Attributes

INCREASING PICK TO PACK TIMES INCREASES RIPE ROTS IN 'HASS' AVOCADOS.

Lecture 4. Factors affecting ripening can be physiological, physical, or biotic. Fruit maturity. Temperature.

Postharvest Handling Banana & Pineapple

Postharvest Handling Banana & Pineapple

Limitations to avocado postharvest handling. Factors to consider when ripening avocado

THE EFFECT OF ETHYLENE UPON RIPENING AND RESPIRATORY RATE OF AVOCADO FRUIT

Effects of Different Transportation Methods on Quality of Sweet Cherry After Forced-air Cooling

PRESERVATION OF FRUITS AND VEGETABLES BY REDUCTION OF ETHYLENE GAS

Weight, g Respiration, µl/g-h Firmness, kg/cm

DEVELOPMENT AND STANDARDISATION OF FORMULATED BAKED PRODUCTS USING MILLETS

EFFECT OF CURING AND SEAL PACKAGING ON PEEL AND PULP WEIGHT LOSS PERCENTAGE OF SCUFFING DAMAGED AND UNDAMAGED CITRUS FRUIT.

Quality INVESTIGATION of Rice Noodles Safe from Gluten

Ripening Tomatoes. Marita Cantwell Dept. Plant Sciences, UC Davis

EFFECT OF FRUCOL APPLICATION ON SHELF LIVE OF IDARED APPLES

Temperature Regimes for Avocados Grown In Kwazulu-Natal

Factors to consider when ripening avocado

Ozone experimentation one the shelf life of various fruits

Proceedings of The World Avocado Congress III, 1995 pp

Studies on Fortification of Solar Dried Fruit bars

Primary Learning Outcomes: Students will be able to define the term intent to purchase evaluation and explain its use.

Sensory Quality Measurements

Structural optimal design of grape rain shed

F&N 453 Project Written Report. TITLE: Effect of wheat germ substituted for 10%, 20%, and 30% of all purpose flour by

AN ENOLOGY EXTENSION SERVICE QUARTERLY PUBLICATION

Instructor: Stephen L. Love Aberdeen R & E Center 1693 S 2700 W Aberdeen, ID Phone: Fax:

Controlled atmosphere storage of 'Honey 'n' Pearl' sweet corn

Effects of Different Packaging Materials on the Shelf Stability of Ginger Juice

Audrey Page. Brooke Sacksteder. Kelsi Buckley. Title: The Effects of Black Beans as a Flour Replacer in Brownies. Abstract:

Ripening and Conditioning Fruits for Fresh-cut

D Lemmer and FJ Kruger

Maurya Shalini 1, Dubey Prakash Ritu 2 Research Scholar 1, Associate Professor 2 Ethelind College of Home Science, SHUATS Allahabad, U.P.

Development and Nutritional Evaluation of Value Added Baked Products using Strawberry (Fragaria)

Materials and Methods

DETERMINATION OF MATURITY STANDARDS OF DATES ABSTRACT

THE INFLUENCE OF MODIFIED ATMOSPHERE STORAGE ON THE QUALITY OF FUERTE AVOCADO FRUIT

NEW ZEALAND AVOCADO FRUIT QUALITY: THE IMPACT OF STORAGE TEMPERATURE AND MATURITY

Harvesting and Postharvest Harvesting and Postharvest Handling of Dates Handling of Dates

Investigation of Map for Durian Preservation

SWEET DOUGH APPLICATION RESEARCH COMPARING THE FUNCTIONALITY OF EGGS TO EGG REPLACERS IN SWEET DOUGH FORMULATIONS RESEARCH SUMMARY

A new approach to understand and control bitter pit in apple

Skin Color. Fruit Shape 6/16/2011. Postharvest Handling of Mango. Cultivar Differences

Preparation of a malt beverage from different rice varieties

Evaluation of Soxtec System Operating Conditions for Surface Lipid Extraction from Rice

REPORT to the California Tomato Commission Tomato Variety Trials: Postharvest Evaluations for 2006

Specialty Vegetables Immature Fruit Vegetables

Hass Seasonality. Avocado Postharvest Handling. Avocado Postharvest Handling. Mary Lu Arpaia University of California, Riverside

Response of 'Hass' Avocado to Postharvest Storage in Controlled Atmosphere Conditions

Studies on the performance of different genotypes of cauliflower grown in plains and higher altitude of Kerala

The Function of English on the Spread of Chinese Tea Culture under the Background of Cross-Border E-Commerce

Relationship between Fruit Color (ripening) and Shelf Life of Cranberries: Physiological and Anatomical Explanation

MULTIVAC BETTER PACKAGING. Multivac Southern Africa

Vibration Damage to Kiwifruits during Road Transportation

Update on Wheat vs. Gluten-Free Bread Properties

Studies on the Development of Mixed Fruit Marmalade

EFFECTS OF 1-METHYLCYCLOPROPENE (1-MCP) COUPLED WITH CONTROLLED ATMOSPHERE STORAGE ON THE RIPENING AND QUALITY OF CAVENDISH BANANA ABSTRACT

Acta Chimica and Pharmaceutica Indica

Effect of benzoate, sorbate and citric acid on the storage stability of strawberry juice

Mischa Bassett F&N 453. Individual Project. Effect of Various Butters on the Physical Properties of Biscuits. November 20, 2006

Genotype influence on sensory quality of roast sweet pepper (Capsicum annuum L.)

1-Methyl cyclopropene (1-MCP): An alternative for controlled atmosphere storage of South African export avocados

Pitahaya postharvest management and sensory evaluation

2. Materials and methods. 1. Introduction. Abstract

Effects of Preharvest Sprays of Maleic Hydrazide on Sugar Beets

Plant Population Effects on the Performance of Natto Soybean Varieties 2008 Hans Kandel, Greg Endres, Blaine Schatz, Burton Johnson, and DK Lee

Testing of Early Ripening Strawberry Cultivars Tolerant to Soil-Borne Pathogens as Alternative to Elsanta

Tofu is a high protein food made from soybeans that are usually sold as a block of

RMUTP Research Journal Special Issue

Studies in the Postharvest Handling of California Avocados

Tools to control ripening and senescence

Steve Sargent Extension postharvest horticulturist Horticultural Sciences Department University of Florida-IFAS.

The Effectiveness of Homemade Egg Substitutes Compared to Egg Beaters. Nicole Myer F&N 453-Food Chemistry November 21, 2005

LAST PART: LITTLE ROOM FOR CORRECTIONS IN THE CELLAR

Pomegranate (Punica granatum L.) a small fruit tree

Final Research Report 1 February, Demonstrating MAP Feasibility for Mango Export

Unit F: Harvesting Fruits and Nuts. Lesson 2: Grade, Pack, Store and Transport Fruits and Nuts

SUDAN EXPERIENCE IN Reducing Post harvest losses SALAH BAKHIET& WIDAD ABDELRAHMAN

Pre- and Postharvest 1-MCP Technology for Apples

COMPARISON OF CORE AND PEEL SAMPLING METHODS FOR DRY MATTER MEASUREMENT IN HASS AVOCADO FRUIT

Evaluation of Quality Characteristics and Microbial Contamination of Saffron Samples Dried by Microwave

Studies on Sensory Evaluation of Jamun Juice Based Paneer Whey Beverage

ETHYLENE RIPENING PROTOCOLS FOR LOCAL AND EXPORT MARKET AVOCADOS

Processing Conditions on Performance of Manually Operated Tomato Slicer

DETERMINATION OF FRYING TEMPERATURE AND VACUUM PRESSURE TO PRODUCE PINEAPPLE CHIPS USING SIMPLE VACUUM FRIER *)

Post-Harvest-Multiple Choice Questions

CHAPTER 1 INTRODUCTION

Utilization of Modified Atmosphere Packaging to Increase Shelf Life

Low temperature shipping and cold chain management of Fuerte avocados: An opportunity to reduce shipping costs

Agnieszka Masny Edward Żurawicz

POSTHARVEST SPECIALISTS postharvest.ucdavis.edu

DEVELOPMENT OF MILK AND CEREAL BASED EXTRUDED PRODUCTS

The importance of packaging

Simulation 2 - Long-term storage of `Carabao mango fruits to simulate shipment to distant market

ALTERNATIVES TO SPORTAK

STEM-END ROTS : INFECTION OF RIPENING FRUIT

Agriculture Update 12 TECHSEAR preparation of Kulfi with ginger extract. and T 3 OBJECTIVES

Transcription:

Agricultural Sciences, 2016, 7, 813-821 http://www.scirp.org/journal/as ISSN Online: 2156-8561 ISSN Print: 2156-8553 Effects of Carbon Dioxide Treatment and Modified Atmosphere Packaging on the Quality of Long Distance Transporting Maehyang Strawberry Hyun Jin Choi, Yeong Seuk Bae, Jung Soo Lee, Me Hea Park, Ji Gang Kim Postharvest Technology Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, Republic of Korea How to cite this paper: Choi, H.J., Bae, Y.S., Lee, J.S., Park, M.H. and Kim, J.G. (2016) Effects of Carbon Dioxide Treatment and Modified Atmosphere Packaging on the Quality of Long Distance Transporting Maehyang Strawberry. Agricultural Sciences, 7, 813-821. http://dx.doi.org/10.4236/as.2016.712074 Received: October 31, 2016 Accepted: November 25, 2016 Published: November 28, 2016 Copyright 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ Open Access Abstract This study was conducted to investigate the effects of carbon dioxide (CO 2 ) and modified atmosphere (MA) packaging on the quality of strawberry during long distance transportation. Maehyang strawberries (Fragaria x ananassa Duch.) with red color on 70% of the fruit surface were harvested in Gyeongnam province, Korea. The samples were placed in gas-tight chamber with 30% CO 2 concentration for 3 hours at 3 C. Strawberry samples were then packaged with modified atmosphere-modified humidity (MA/MH) packaging film. Samples treated with CO 2 alone and combined CO 2 with MA packaging were stored for one day at 1 C, transported for 10 days at 1 C, and distributed for 3 days at 4 C. Carbon dioxide alone or combination with MA packaging was effective in maintaining quality of Maehyang strawberries. Carbon dioxide treatment significantly increased firmness and reduced softening index and decay rate during 14 day transportation and distribution. Samples treated with CO 2 + MA had higher overall score with low softening index and weight loss after 14 days of transportation and low temperature distribution compared to CO 2 treatment only. The results indicated that a short term application of CO 2 or combination treatment of CO 2 and MA could be good postharvest handling for maintaining freshness of Maehyang strawberries during long distance vessel export. Keywords Carbon Dioxide, Firmness, Modified Atmosphere, Quality, Strawberry 1. Introduction Strawberry is highly perishable fruit and requires careful handling in order to maintain quality after harvest. Strawberry is considered as winter fruit in Korea because con- DOI: 10.4236/as.2016.712074 November 28, 2016

sumption of the fruit is high in winter season. Though the domestic market of strawberry has been increased in Korea, the strawberry industry tries to expand the export market. Total strawberry export has been increasing and the trend is expected to remain strong, mainly due to the increased shipments to South East Asian countries such as Singapore and Hong Kong of China [1]. However, strawberry has a limited shelf-life due to rapid softening and decay during postharvest handling such as transportation, storage and marketing. The main characteristics related to the market quality of strawberry fruits are texture (firmness), flavor and decay rate. Generally, fungal decay is caused to loss of quality on strawberry for storage time [2]. It is therefore important to apply an appropriate postharvest treatment to delay respiration, prevent physical damage, dryness and to restrict fungal decay in order to extend shelf-life. Postharvest treatment such as precooling [3], storage at low temperature [4], carbon dioxide [2] [5] [6] and chlorine dioxide [7] can be used for this purpose. For example, Lee H.J. et al. reported that a short term application of CO 2 during cooling has a benefit for keeping freshness of strawberries during export and local marketing [5]. Harker F.R. et al. reported that mechanism for CO 2 -induced firmness enhancement in strawberry is due to changes in the ph of the apoplast. Such changes in ph may promote the precipitation of soluble pectins and thus enhance cell-to-cell bonding in strawberry fruit [6]. Controlled atmosphere or modified atmosphere (CA or MA) has been used successfully on maintaining the quality of strawberries. Modified atmosphere packaging can be considered as a self-contained form of controlled atmosphere designed to maintain the internal gas composition of the packaging during transportation and storage. A modified atmosphere extends the shelf-life of the fruits, whereas the sealed container protects them from exposure to diseases and other environmental contaminants [8]. Controlling the relative humidity and storage temperature were important factors for keeping the freshness of fruits. To increase the export of fruit, such as strawberries, it is necessary to develop the postharvest management of fruit during retail marketing after transportation. Compared to air transportation, vessel export is cheaper and can move higher volumes, but it takes 3-10 days longer to transport goods. Vessel export would seem unsuitable for strawberries, a fruit that can over ripen easily and become soft or rot [7]. In this study, to extend the shelf-life of strawberry, we examined the CO 2 treatment alone and combined CO 2 with MA. We investigate the quality of Maehyang strawberry during different storage conditions in the retail marketing after vessel export. 2. Material and Methods 2.1. Plant Materials and Treatment Fresh Maehyang strawberry fruits were grown and harvested from commercial greenhouses in Jinju, Gyeongsangnam-do, Korea. Strawberry fruits were harvested in the early morning and immediately precooled in storage room at 1 C for 2 hour. Fruits of uniform medium size with red color on 70% of the fruit surface were used for this study. Postharvest treatment was 30% concentration of carbon dioxide gas with 3 hour 814

and using strawberry modified atmosphere packaging film (Xtend, Stepac, Israel). 2.2. Storage, Transportation and Retail Marketing Conditions Maehyang samples treated with 30% concentration of CO 2 alone and combined CO 2 with MA packaging were stored for one day at 1 C, transported for 10 days at 1 C by vessel container, and distribution condition; cold storage for 3 days at 4 C, retail market (10 C - 15 C) and room temperature. 2.3. Quality Evaluations Quality evaluations included weight loss, firmness, total soluble solid (TSS) and sensory analysis. Weight loss was evaluated by measuring the weight of eight randomly chosen boxes. Fruits were weighed using a digital balance scale (HH320, OHAUS, NJ, USA) just before treatment in South Korea, again upon their arrival in Singapore and retail marketing duration. All texture measurements were undertaken potable firmness testing machine (FHM-5, Takemura, Japan) and 10 individual fruit per treatment were selected for each of them. Total soluble solids (TSS) were measured according to the AOAC procedures [9]. On each evaluation day, 5 fruit from each replicate was wrapped with 2 layer of cotton cloth and squeezed with a hand pressed juice maker. TSS of the resultant juice was measured in terms of brix using a refractometer (PAL-1, Atago Co. Ltd, Tokyo, Japan). The sensory analysis of strawberry sample was carried out by expert panel. The member of the panel were trained to recognize and overall visual quality of strawberry sample prior to the test. These sensory qualities were evaluated by using 9-point scale (9 = excellent, 7 = good, 5 = moderate, 3 = poor, and 1 = unusable). A score of 6 was considered as the limit of marketability. To incidence of decay was analyzed by eye and then quantified as a percentage by counting the number of decayed fruits divided by the total number of fruits in a single plastic box, and multiplying by 100. There were 20-24 strawberries in each plastic box weighing approximately 280 g. Softening score of individual fruit in a box was carried out on 5-scale (0 = 0% surface softened, 1 = up to 10% surface softened, 2 = 10 to 25% surface softened, 3 = 25 to 50% surface softened, and 4 = >50% surface softened) [2]. 2.4. Statistical Analysis The experiment was conducted with three replications per treatment. Statistical analyses of the data were carried out using SAS software (SAS Institute, Cary, NC, USA). The level of significance was calculated from the F value of ANOVA. Mean comparison was achieved by Duncan s multiple range test. 3. Results and Discussion 3.1. Weight Loss Weight loss during storage due to transpiration was observed for all treatments. Com- 815

bination of CO 2 and MA treatments showed significantly lower values than the control and CO 2 treatment. Modified atmosphere such as box in bag, it maintained moisture and freshness. By Robinson et al., losses of 6% of the initial value of fresh weight of a soft fruit should be considered the limit for marketability [10]. In this study, after 14 days of storage, control had loss 2% and CO 2 treatment had loss 3% due to stress of gas injection in acrylic chamber. However treated with combination of CO 2 and MA was shown that loss of fresh weight was 1% in 14 days of storage at under 4 C. Comparing all treatments, combination of CO 2 and MA treatments had a significant effect on weight loss, presenting the lowest values (Figure 1). 3.2. Firmness One of the main factors used to determine fruit quality and postharvest shelf life is the amount of loss of firmness during the storage of soft fruit such as strawberries [11]. By Manning [12], fruit softening is attributed to the degradation of cell wall components, mainly pectin, due to the action of specific enzymes such as polygalacturonase. The firmness of strawberries increased as the 30% concentration of carbon dioxide treatment within 3 hour. After vessel export at 1 C, firmness was maintained higher than control in all storage condition (Figure 2). Although increases in fruit firmness were reported in other studies by the application of high level of carbon dioxide [5] [6], in addition to the firmness enhancement observed when strawberry fruit are held at low temperatures [13]. The firmness of strawberries after vessel export remained higher than harvest firmness values throughout the 15 day period of continuous cold storage at under 4 C. By F.R. Harker et al., strawberries from all treatments softened rapidly and no residual effect of CO 2 -enhanced firming was detectable within 3 days at 20 C (data not shown) [6]. However, Maehyang strawberries treated with CO 2 and CO 2 + MA maintained firmness until 3 days at room temperature (over 26 C), unlike that of 3.5 Weight loss (%) 3.0 2.5 2.0 1.5 1.0 Control CO₂ CO₂+MA b d e b d e b cd e a c e 0.5 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Figure 1. Changes in weight loss of Maehyang strawberries treated with CO 2 alone or combination of CO 2 and MA packaging after 10 days of transportation. Vertical lines represent S.E. 816

1.8 1.6 Control CO₂ CO₂+MA bcd ab ab ab ab abc ab ab ab Firmness(kgf) 1.4 1.2 1.0 e e e e de de e cde de f cde de 0.8 0.6 0 0' 11 12 13 14 15 Figure 2. Changes in firmness of Maehyang strawberries treated with CO 2 alone or combination of CO 2 and MA packaging after 10 days of transportation during storage days at 4 C. 0 means at harvest before treatment. 0 means after treatment of CO 2 for 3hr before storage. Vertical lines represent S.E. Different letters indicate significant differences at p 0.05. untreated control. 3.3. Total Soluble Solids Total soluble solids are a critical factor for determining fruit quality and consumer acceptability. Sugars are the main soluble metabolites, and include glucose, fructose and sucrose comprising 99% of total sugar content [14]. The TSS of cv. Maehyang strawberries at harvest was 10.88 Brix and all treatments showed increases in the values during the storage time (Table 1). TSS was remained with low temperature storage, whereas TSS of Maehyang strawberries stored in retail market at 10 C - 15 C were shown 9.72 Brix at the end of marketing (after harvest 14 days). 3.4. Sensory Quality Sensory quality is related to the characteristics of the food and how consumers perceive them [15]. With increasing storage time, deterioration starts with decay, fermentation and bruising [16]. Visual quality of Maehyang strawberries after vessel transportation was evaluated. Carbon dioxide alone and combination of CO 2 and MA treatment were effective in delaying dark red coloration on fruit surface. Softening index of Maehyang strawberries was the highest in the control group at 11 days of storage (<4 C) (Figure 3). After 15 days of storage (<4 C), control showed higher score than those of CO 2 and combined CO 2 with MA treated strawberry. However, in low temperature storage under 4 C, it restrained to occur softening on the surface of strawberry. Comparing all treatments, CO 2 and combination of CO 2 and MA treatments had a significant effect (p < 0.05) on softening index, presenting lower 817

Table 1. Changes in total soluble solids of Maehyang strawberry treated with carbon dioxide or MAP at different storage conditions after vessel export. Storage condition Treatment 0 0 11 12 13 14 15 Control 10.88 ± 0.18 10.88 ± 0.18 10.00 ± 0.20 11.18 ± 0.37 11.34 ± 0.61 13.76 ± 0.15 10.24 ± 0.06 4 C CO 2 10.88 ± 0.18 12.44 ± 0.35 10.20 ± 0.11 11.58 ± 0.57 11.00 ± 0.34 11.04 ± 0.28 10.70 ± 0.27 Retail marketing (10-15 C) CO 2 + MA 10.88 ± 0.18 12.44 ± 0.35 11.00 ± 0.36 11.60 ± 0.30 11.48 ± 0.20 10.70 ± 0.31 10.18 ± 0.20 CO 2 9.88 ± 0.20 10.66 ± 0.17 9.72 ± 0.20 0 means at harvest before treatment. 0 means after treatment of CO 2 for 3 hr before storage. Data are means ± S.E. 4 Control 3 CO₂ CO₂+MA Softening Index 2 1 0 0 0' 11 12 13 14 15 Figure 3. Softening index of Maehyang strawberries treated with CO 2 alone or combination of CO 2 and MA packaging after 10 days of transportation during storage days at 4 C. 0 means at harvest before treatment. 0 means after treatment of CO 2 for 3 hr before storage. Vertical lines represent S.E. Softening index was scored using five-point scale based on the degree of softening area of the fruit surface where 0 = normal (0% surface softened), 1 = trace (up to 10% surface softened), 2 = slight (10 to 25% surface softened), 3 = moderate (25% - 50% surface softened), and 4 = severe (>50% surface softened). values than control. Overall score of Maehyang strawberries decreased gradually in storage time in all treatments at room temperature after vessel export (Figure 4). Although samples of different treatments received marketable scores until 12 days of storage (cold storage following 10 days transportation). After 2 days at room temperature after cold storage following 10 days transportation, strawberries lost marketability in all the treatment representing severely softening. Non-treated control showed lower score than those of CO 2 and CO 2 + MA treated strawberry. Decay development is one of the main causes for postharvest losses of horticultural 818

Overall score 9 8 7 6 5 4 3 2 1 0 70 Control CO₂ CO₂+MA 1d at RT 2d at RT 3d at RT (a) 60 50 Control CO₂ CO₂+MA Decay rate(%) 40 30 20 10 0 1d at RT 2d at RT 3d at RT (b) Figure 4. Overall quality score and decay rate of Maehyang strawberries treated with CO 2 alone or combination of CO 2 and MA packaging during storage period at room temperature (1d, 2d and 3d) after cold storage following 10 day transportation was scored by three trained panelists using a 1-9 hedonic scale where 1 = dislike extremely; 2 = dislike very much; 3 = dislike moderately; 4 = dislike slightly; 5 = neither like nor dislike; 6 = like slightly; 7 = like moderately; 8 = like very much; and 9 = like extremely. produce. In particularly, strawberries are highly susceptible to microbial infection and have a short shelf-life caused by Botrytis cinerea [17]. Fruit decay was not shown by cold temperature storage (<4 C) for up to 15 days after harvest. However, the decay rate was the highest in the control group at 3 days room temperature storage cold sto- 819

rage following 10 days transportation (Figure 4). High carbon dioxide levels may have inhibited decay by Nielsen and Leufven [18]. At the point of 2 days in room temperature, it occurred fungal decay on control and CO 2 + MA. And after 3 days in room temperature, all treatments were shown that fungal decay on surface. In summary, worth notice is that we did not detect any decay at all when strawberry were sent immediately after vessel export and retail marketing, but only after storage at room temperature (simulation in wholesale market) high levels of fungal decay were shown after 2 days of storage on control and CO 2 + MA, and after 3 days, all treatments were shown high percentage of fungal decay on fruit surface. 4. Conclusion Maintaining the quality of highly perishable fruits, such as strawberries, associated with the cold, retail market, local chain systems after long term transporting, is a difficult subject. Atmosphere containing 30% CO 2 was effective in reducing decay rate and fruit softening and maintaining bright red color of Mayhyang strawberries during long term transportation and distribution. Samples treated with combination of 30% CO 2 and MA had higher overall score with low softening index and weight loss after 14 days of transportation and low temperature distribution. Thus, CO 2 treatment alone or combination of CO 2 and MA could be a practical postharvest technology to extend shelf-life of Maehyang strawberry. Therefore, Maehyang strawberry can be exported through vessel transportation. Acknowledgements This work was supported by Rep. of Korea-IPET project (315088-2, Development of shelf-life extension technology of fresh agricultural products for exports by sea transportation). References [1] Korea Rural Economic Institute (KREI) (2015) Agriculture in Korea 2015. 170. [2] Chandra, D., Choi, A.J., Lee, J.S., Lee, J. and Kim, J.G. (2015) Changes in Physicochemical and Sensory Qualities of Goha Strawberries Treated with Different Conditions of Carbon Dioxide. Agricultural Sciences, 6, 325-334. https://doi.org/10.4236/as.2015.63033 [3] Park, J.E., Kim, H.M. and Hwang, S.J. (2012) Effect of Harvest Time, Precooling, and Storage Temperature for Keeping the Freshness of Maehyang Strawberry for Export. Journal of Bio-Environment Control, 21, 404-410. https://doi.org/10.12791/ksbec.2012.21.4.404 [4] Eum, H.L., Bae, S.J., Hwang, D.K., Yeoung, Y.R. and Hong, S.J. (2014) Effects of Shipping Temperature and Precooling Treatment of Everbearing Strawberry Cultivars Goha and Flamenco Grown on Highland through Export Simulation. Korean Journal of Horticultural Science & Technology, 32, 202-209. [5] Lee, H.J., Kim, K.C., Piao, Y.L. and Hwang, Y.S. (2002) A Potential of Postharvest CO 2 Treatment on the Market Quality of Strawberries during Simulated Export. Korean Journal of Agricultural Science, 29, 24-31. [6] Harker, F.R., Elgar, H.J., Watkins, C.B., Jackson, P.J. and Hallett, I.C. (2000) Physical and Mechanical Changes in Strawberry Fruit after High Carbon Dioxide Treatments. Postharv- 820

est Biology and Technology, 19, 139-146. https://doi.org/10.1016/s0925-5214(00)00090-9 [7] Kim, H.M. and Hwang, S.J. (2016) Effect of Chlorine Dioxide on Freshness of Maehyang Strawberries during Export. Korean Society for Horticultural Science, 34, 626-633. [8] Giuggioli, N.R., Girgenti, V., Baudino, C. and Peano, C. (2015) Influence of Modified Atmosphere Packaging Storage on Postharvest Quality and Aroma Compounds of Strawberry Fruits in a Short Distribution Chain. Journal of Food Processing and Preservation, 39, 3154-3164. https://doi.org/10.1111/jfpp.12390 [9] AOAC (Association of Official Agricultural Chemist) (1990) Official Methods of Analysis. 12th Edition, AOAC International, Washington DC. [10] Robinson, J.F., Browne, K.M. and Burton, W.G. (1975) Storage Characteristics of Some Vegetables and Soft Fruits. Annals of Applied Biology, 81, 399-408. https://doi.org/10.1111/j.1744-7348.1975.tb01656.x [11] Tanada-Palmu, P.S. and Grosso, C.R. (2005) Effect of Edible Wheat Gluten-Based Films and Coatings on Refrigerated Strawberry (Fragaria ananassa) Quality. Postharvest Biology and Technology, 36, 199-208. https://doi.org/10.1016/j.postharvbio.2004.12.003 [12] Seymour, G.B., Taylor, J.E. and Tucker, G.A. (2012) Biochemistry of Fruit Ripening. Springer, Netherlands. [13] Watkins, C.B., Manzano-Mendez, J.E., Nock, J.F., Zhang, J. and Maloney, K.E. (1999) Cultivar Variation in Response of Strawberry Fruit to High Carbon Dioxide Treatments. Journal of the Science of Food and Agriculture, 79, 886-890. https://doi.org/10.1002/(sici)1097-0010(19990501)79:6<886::aid-jsfa303>3.0.co;2-0 [14] Kafkas, E., Koşar, M., Paydaş, S., Kafkas, S. and Başer, K. (2007) Quality Characteristics of Strawberry Genotypes at Different Maturation Stages. Food Chemistry, 100, 1229-1236. https://doi.org/10.1016/j.foodchem.2005.12.005 [15] Costell, E. (2002) A Comparison of Sensory Methods in Quality Control. Food Quality and Preference, 13, 341-353. https://doi.org/10.1016/s0950-3293(02)00020-4 [16] Ares, G., Barrios, S., Lareo, C. and Lema, P. (2009) Development of a Sensory Quality Index for Strawberries Based on Correlation between Sensory Data and Consumer Perception. Postharvest Biology and Technology, 52, 97-102. https://doi.org/10.1016/j.postharvbio.2008.11.001 [17] Wszelaki, A. and Mitcham, E. (2003) Effect of Combinations of Hot Water Dips, Biological Control and Controlled Atmospheres for Control of Gray Mold on Harvested Strawberries. Postharvest Biology and Technology, 27, 255-264. https://doi.org/10.1016/s0925-5214(02)00095-9 [18] Nielsen, T. and Leufven, A. (2008) The Effect of Modified Atmosphere Packaging on the Quality of Honeoye and Korona Strawberries. Food Chemistry, 107, 1053-1063. https://doi.org/10.1016/j.foodchem.2007.09.025 821

Submit or recommend next manuscript to SCIRP and we will provide best service for you: Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc. A wide selection of journals (inclusive of 9 subjects, more than 200 journals) Providing 24-hour high-quality service User-friendly online submission system Fair and swift peer-review system Efficient typesetting and proofreading procedure Display of the result of downloads and visits, as well as the number of cited articles Maximum dissemination of your research work Submit your manuscript at: http://papersubmission.scirp.org/ Or contact as@scirp.org