Simple isocratic method for simultaneous determination of caffeine and catechins in tea products by HPLC

Similar documents
Determination of the concentration of caffeine, theobromine, and gallic acid in commercial tea samples

Determination of Melamine Residue in Milk Powder and Egg Using Agilent SampliQ Polymer SCX Solid Phase Extraction and the Agilent 1200 Series HPLC/UV

Application Note: Analysis of Melamine in Milk (updated: 04/17/09) Product: DPX-CX (1 ml or 5 ml) Page 1 of 5 INTRODUCTION

Determination of Caffeine in Coffee Products According to DIN 20481

High-Resolution Sampling 2D-LC with the Agilent 1290 Infinity II 2D-LC Solution

! " # # $% 004/2009. SpeedExtractor E-916

Rapid Analysis of Soft Drinks Using the ACQUITY UPLC H-Class System with the Waters Beverage Analysis Kit

High Sensitivity Quantitation Method of Dicyandiamide and Melamine in Milk Powders by Liquid Chromatography Tandem Mass Spectrometry

Enhancing the Flexibility of the NGC Chromatography System: Addition of a Refractive Index Detector for Wine Sample Analysis

Rapid Tea Analysis on Poroshell 120 SB-C18 with LC/MS

Extraction of Acrylamide from Coffee Using ISOLUTE. SLE+ Prior to LC-MS/MS Analysis

A COMPARATIVE STUDY OF THE CAFFEINE PROFILE OF MATURE TEA LEAVES AND PROCESSED TEA MARKETED IN SONITPUR DISTRICT OF ASSAM, INDIA.

Determination of Methylcafestol in Roasted Coffee Products According to DIN 10779

The Determination of Pesticides in Wine

Determination Of Saponin And Various Chemical Compounds In Camellia Sinensis And Genus Ilex.

Determination of Ochratoxin A in Roasted Coffee According to DIN EN 14132

Vinmetrica s SC-50 MLF Analyzer: a Comparison of Methods for Measuring Malic Acid in Wines.

Determination of natamycin in wines Résolution OIV-SCMA

Higher Resolution Separation of Organic Acids and Common Inorganic Anions in Wine

Analytical Method for Coumaphos (Targeted to agricultural, animal and fishery products)

Journal of Chemical and Pharmaceutical Research, 2017, 9(9): Research Article

Analysis of trace elements and major components in wine with the Thermo Scientific icap 7400 ICP-OES

TSKgel TECHNICAL INFORMATION SHEET No. 131

Validation Report: Total Sulfite Assay Kit (cat. no. K-TSULPH)

SUPPLEMENTARY MATERIALS. Methylxanthine content in commonly consumed foods in Spain and determination of its intake during consumption

Experiment 6 Thin-Layer Chromatography (TLC)

PECTINASE Product Code: P129

Extraction of Multiple Mycotoxins From Animal Feed Using ISOLUTE Myco SPE Columns prior to LC-MS/MS Analysis

Analysis of Resveratrol in Wine by HPLC

RESOLUTION OIV-OENO ANALYSIS OF VOLATILE COMPOUNDS IN WINES BY GAS CHROMATOGRAPHY

Sequential Separation of Lysozyme, Ovomucin, Ovotransferrin and Ovalbumin from Egg White

Application Note FP High Sensitivity Coumarin Analysis. Introduction. Keywords

CHAPTER 8. Sample Laboratory Experiments

Samples: Standard solutions of rutin, quercetina, rosmarinic acid, caffeic acid and gallic acid. Commercial teas: Green, Ceilan, Hornimans and Black.

Table 1: Experimental conditions for the instrument acquisition method

IT S TOO EASY TO JUST SAY. hot water and tea leaves are the only ingredients allowed BREWED TEA!

Determination of Pesticides in Coffee with QuEChERS Extraction and Silica Gel SPE Cleanup

Determination of Metals in Wort and Beer Samples using the Agilent 5110 ICP-OES

Estimation of Caffeine Concentration in Decaffeinated Coffee and Tea Available in Pakistan

EXPERIMENT 6. Molecular Fluorescence Spectroscopy: Quinine Assay

EXTRACTION PROCEDURE

Ochratoxin A N H. N-{ [(3R)-5-chloro-8-hydroxy-3-methyl-1-oxo-3,4-dihydro-1H-isochromen-7-yl]carbon yl}- L-phenylalanine

HI Formol Number Mini Titrator for Wine and Fruit Juice Analysis

Correlation of the free amino nitrogen and nitrogen by O-phthaldialdehyde methods in the assay of beer

three different household steam ovens, representing a number of identically constructed ovens (see attached list at the end of this document):

III. RESEARCH METHODOLOGY

Application & Method. doughlab. Torque. 10 min. Time. Dough Rheometer with Variable Temperature & Mixing Energy. Standard Method: AACCI

Validation Report: Free Sulfite Assay Kit (cat. no. K-FSULPH)

INTERNATIONAL STANDARD

Practical 1 - Determination of Quinine in Tonic Water

Michigan Grape & Wine Industry Council Annual Report 2012

[ application note note ] ]

Solid Phase Micro Extraction of Flavor Compounds in Beer

Identification & Estimation of Melamine Residue in Powdered Milk by RP-HPLC

Caffeine in Energy Drinks

GAS-CHROMATOGRAPHIC ANALYSIS OF SOME VOLATILE CONGENERS IN DIFFERENT TYPES OF STRONG ALCOHOLIC FRUIT SPIRITS

Determination of Alcohol Content of Wine by Distillation followed by Density Determination by Hydrometry

Determination of Coumarins in Cosmetics

Paul A. Ullucci, Marc Plante, Ian N. Acworth, Christopher Crafts, and Bruce Bailey Thermo Fisher Scientific, Chelmsford, MA, USA

Somchai Rice 1, Jacek A. Koziel 1, Anne Fennell 2 1

APPLICATIONS TN Fast and Robust Analysis of Organic Acids from Wine using HPLC-UV. Introduction. Results and Discussion. Materials and Methods

Solid Phase Micro Extraction of Flavor Compounds in Beer

A study on chemical estimation of pu-erh tea quality

RIDASCREEN Gliadin. Validation Report. R-Biopharm AG. Art.No. R7001

RESOLUTION OIV-OENO MONOGRAPH ON GLUTATHIONE

International Journal Of Recent Scientific Research

An Economic And Simple Purification Procedure For The Large-Scale Production Of Ovotransferrin From Egg White

Comprehensive analysis of coffee bean extracts by GC GC TOF MS

BEEF Effect of processing conditions on nutrient disappearance of cold-pressed and hexane-extracted camelina and carinata meals in vitro 1

Alcohol Meter for Wine. Alcolyzer Wine

Speciated Arsenic Analysis in Wine Using HPLC-ICP-QQQ

EXTRACTION OF SEDIMENTS FOR BUTYLTINS

Identification of Adulteration or origins of whisky and alcohol with the Electronic Nose

Effects of ginger on the growth of Escherichia coli

Separation of Ovotransferrin and Ovomucoid from Chicken Egg White

PROMOTION OF EXTRACTION OF GREEN TEA CATECHINS IN WATER EXTRACTION AT LOW TEMPERATURE USING ULTRASOUND. Hitoshi Koiwai, Nobuyoshi Masuzawa

Laboratory Performance Assessment. Report. Analysis of Pesticides and Anthraquinone. in Black Tea

Measuring tannins in grapes and red wine using the MCP (methyl cellulose precipitable tannin assay

Bromine Containing Fumigants Determined as Total Inorganic Bromide

Allergens in wine a specific detection of Casein, Egg and Lysozyme

HPLC determination of catechins and caffeine in tea. Differentiation of green, black and instant teas

Methanol (Resolution Oeno 377/2009, Revised by OIV-OENO 480/2014)

Yeast nuclei isolation kit. For fast and easy purification of nuclei from yeast cells.

One class classification based authentication of peanut oils by fatty

Tyler Trent, SVOC Application Specialist; Teledyne Tekmar P a g e 1

STABILITY EVALUATION OF RESVERATROL SUBMITTED TO IONIZING RADIATION

Organic Chemistry 211 Laboratory Gas Chromatography

HPLC Analysis of Laxative Rhein Content in Cassia fistula Fruits of Different Provenances in Thailand

Extraction by subcritical water of polyphenols from Dunkelfelder and Cabernet Franc grape pomace coupled with membrane filtration

RAPID, SPECIFIC ANALYSIS OF MELAMINE CONTAMINATION IN INFANT FORMULA AND LIQUID MILK BY UPLC/MS/MS

Detecting Melamine Adulteration in Milk Powder

EXTRACTION OF SEDIMENTS FOR AROMATIC AND CHLORINATED HYDROCARBONS

Food Safety in Wine: Removal of Ochratoxin a in Contaminated White Wine Using Commercial Fining Agents

Evaluation of Soxtec System Operating Conditions for Surface Lipid Extraction from Rice

Application Note CL0311. Introduction

A Fast Method for Sugar Analysis of Instant Coffee Samples

DBP Formation from the Chlorination of Organics in Tea and Coffee

Effect of Different Levels of Grape Pomace on Performance Broiler Chicks

Lab 2. Drug Abuse. Solubility and Colligative Properties of Solutions: Coffee, Soda, and Ice Cream

Transcription:

DOI 0.86/s40064-06-2672-9 RESEARCH Open Access Simple isocratic method for simultaneous determination of caffeine and catechins in tea products by HPLC Chamira Dilanka Fernando,2 and Preethi Soysa * Abstract Tea is a popular beverage almost all over the world. Many studies show that tea consumption is closely associated with positive health impact. Most of the HPLC methods used for the determination of tea constituents include gradient elution systems which involve expensive instrumentation. The objective of this study was to develop a simple, rapid precise and low cost HPLC method for the separation and quantification of catechins and caffeine in tea (Camellia sinensis). The method utilizes a phenyl column (2. 50 mm) with a UV-detector (280 nm) where excellent chromatographic separation of tea components i.e. gallic acid (GA), caffeine (Caf ), epicatechin (EC) and ( )-epigallocatechin gallate (EGCG) was achieved. The isocratic elution system of acetonitrile, glacial acetic acid and deionized water (8::9 v/v/v) at a flow rate of 0.5 ml/min was involved. This method produced excellent accuracy and precision. Within run and between run precision was less than 7.5 %. The equations for calibration curves were y = 0.7 (±0.00)x + 0.73 (±0.024), y = 0.00 (±0.003)x + 0.045 (±0.09), y = 0.06 (±0.00)x + 0.006 (±0.004), y = 0.025 (±0.00)x 0.025 (±0.007) for GA, Caf, EC and EGCG respectively. The method validation parameters prove that the method is efficient, a simple and adequate for the quantitative determination of principal components in tea samples. Keywords: Caffeine, Catechins, HPLC, Isocratic method, Tea Background Tea is a healthy beverage enjoyed by most population in the world. The medicinal effects of tea include anticancer activity, anti-obesity, antidepressant, anti-inflammatory, antimicrobial etc. (Fernando and Soysa 205). Tea is a complex mixture of phytochemicals. Among them polyphenols, catechins and caffeine have drawn more attention to study its health benefits. Catechins consist of flavon-3-ol structure and have been proved to be strong antioxidants and free radicals scavenging agents (He et al. 200). The biological activities of catechins vary depending on their structures. Polyphenolic substances like gallic acid have demonstrated cytotoxic activity in cancer cell lines (Fernando and Soysa 205). Caffeine, the coexisting component with polyphenols has been found to *Correspondence: indunilsree@gmail.com Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo 08, Sri Lanka Full list of author information is available at the end of the article increase fatty acid oxidation and act as an ergogenic substance (Pesta et al. 203). Many HPLC methods have been developed so far to separate and determine catechins and caffeine present in tea and most of them involve with gradient systems (He et al. 200; Saito et al. 2006). Gradient elution HPLC is complex compared to isocratic system. Some of the major disadvantages of gradient elution systems include the requirement of expensive instrumentation, when getting back to the original concentration, difficulty in optimization of the conditions and obtaining reproducible results (Janoušková et al. 200; Schellinger et al. 2005; Churácek 985). The current method involves simple isocratic method which can be performed in an ordinary laboratory with low cost HPLC machine to determine gallic acid (GA), caffeine (Caf), epicatechin (EC) and ( )-epigallocatechin gallate (EGCG) contents in tea products. This method can be used to analyze the quality of tea and also any adulteration of tea available in the market. 206 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Page 2 of 5 Results and discussion We developed a simple, rapid and accurate analytical method for quantification of GA, Caf, EC and EGCG in tea products using a low-cost HPLC method. The mobile phase composition and flow rate were optimized to have well defined separation of gallic acid, caffeine, epicatechin, epigallocatechin gallate as well as the internal standard β-hydroxyethyltheophilline with excellent chromatographic resolution (Fig. a, b). These compounds were eluted at.96, 5.89, 2.2, 5.49 and 4.2 min respectively. The calibration curves were linear over 2.5 25 μg/ml with R 2 exceeding 0.995 for each of the compounds separately (Fig. 2). The equations for calibration curves were y = 0.7 (±0.00)x + 0.73 (±0.024), y = 0.00 (±0.003)x + 0.045 (±0.09), y = 0.06 (±0.00)x + 0.006 (±0.004), y = 0.025 (±0.00)x 0.025 (±0.007) for GA, Caf, EC and EGCG respectively. The standard deviations of the slope and intercepts of these curves prove a good reproducibility for all substances tested. It also suggests that the concentration used for β-hydroxyethyltheophylline as the internal standard for all the substances i.e. GA, Caf, EC and EGCG analysis is adequate. The accuracy and precision of the present method were sufficient. The accuracy was 96 03 % and the within run and between run precision (CV %) was ranging from 0.8 7.4 % for all the compounds studied. The LOD found was 0.4, 0.7,.3 and 0.7 µg/ml, whereas, the LOQ was.2, 2.2, 3.8 and 2.2 µg/ml for GA, Caf, EC and EGCG respectively. The slope of the calibration curves remained stable for at least up to 6 weeks suggesting their long term stability when stored at 20 C with minimal within run and between run variability over the same time period. The summary of validated parameters for the HPLC method used in this study is tabulated in Table. In addition to HPLC UV system, other HPLC based separation systems involved to characterize tea constituents are HPLC-ECD, HPLC-FD, CL- HPLC, HPLC MS, Ultra HPLC, Nano HPLC and two dimensional UHPLC. Some of these methods show high sensitivity and may be important in analysis of plasma levels of tea catechins. However these systems are expensive, sophisticated and hence requires technical expertise in handling such instrumentation (Yashin et al. 205). In comparison, isocratic HPLC UV method developed in the present study is economical and less complicated. The modifications, optimizations and validation we have incorporated in the current method can be applied to analyze GA, Caf, EC and EGCG in tea in an ordinary laboratory. Conclusion The HPLC method developed is a simple, reliable and rapid to measure GA, Caf, EC and EGCG in tea products. Over 300 sample injections were carried out using a single column without any significant alterations to the peak shape or pressure buildup in the HPLC system. Methods Reagents and chemicals Deionized water was used for preparation of all standards and samples. HPLC grade acetonitrile was purchased from BDH (BDH Chemicals Ltd. Poole, England). β-hydroxyethyltheophylline, Caf, GA, EC and EGCG were ACS reagents purchased from Sigma Chemicals, USA. Crush, tear, curl (CTC) low grown pure Ceylon black tea was obtained from Danduwangalawatta Tea factory, Millawitiya, Kuruwita, Sri Lanka. Equipment HPLC was performed with Shimadzu LC 0AS solvent delivery system equipped with UV/VIS variable wavelength detector Shimadzu SPD 0A (Shimadzu Corporation, Japan) and an integrator Shimadzu C-R8A (Shimadzu Corporation, Japan). Chromatographic resolution of components in tea was achieved on a 2. 50 mm, betasil phenyl HPLC column (Thermo scientific). The temperature of the chromatographic column was maintained at 25 C throughout all experiments. Fig. The HPLC chromatograms of standard samples ( gallic acid, 3 caffeine, 4 epicatechin, 5 epigallocatechin gallate) each at a concentration level of 8 μg/ml, 2 internal standard i.e., β-hydroxyethyl-theophylline (0 μg/ml) (a) and CTC black tea ( gallic acid, 2 β-hydroxyethyl-theophylline, 3 caffeine, 4 epicatechin, and 5 epigallocatechin gallate (b)

Page 3 of 5 Peak Area Ra o 3.5 3 2.5 2.5 Gallic acid Caffeine Epicatechin Epigallocatechin gallate y = 0.72x + 0.706 R² = 0.9995 y = 0.0997x -0.042 R² = 0.9992 y = 0.056x + 0.0262 R² = 0.998 0.5 y = 0.0249x -0.0252 0 R² = 0.9959 0 0 20 30 Concentra on ( g/ml) Fig. 2 Standard curves obtained for gallic acid, caffeine, epicatechin and epigallocatechin gallate over the concentration range of 2.5 25 μg/ml. (Peak area ratio = Area under curve of the analyte/area under curve of internal standard) Samples were injected with a syringe loading injector fitted with a 00 μl loop. Shimadzu Libror AEG-220 analytical balance (Shimadzu Corporation, Japan) was used to prepare standard solutions. Purified deionized water was obtained from Labconco Water Pro-PS UV ultra filtered water system (Labconco Corporation, Missouri). Micro-centrifugation was performed using a BioFuge-Pico D-37520 centrifuge (Heraeus Instruments, Germany). Preparation of the calibration standards and the internal standard Calibration standards were prepared as follows. Gallic acid, caffeine, epicatechin and ( )-epigallocatechin gallate were prepared separately in deionized water to give a concentration of mg/ml. Each solution (5.0 ml) was mixed together in a 00.0 ml volumetric flask and the total volume was adjusted to the mark with deionized water to yield a solution mixture where concentration of each component i.e. gallic acid, caffeine, epicatechin, and ( )-epigallocatechin gallate is equal to 50 μg/ml. This stock solution was diluted accordingly to yield a concentration series of 2.5 25 μg/ml. Stock solution of β-hydroxyethyltheophilline was prepared in deionized water at a concentration of mg/ml. β-hydroxyethyltheophilline (0 μg/ml) was prepared by diluting the stock solution with deionized water and used as the internal standard. The calibration standard mixtures and the internal standard was dispensed separately into sterile centrifuge tubes and stored at 20 C until further use. Preparation of the quality control (QC) materials Quality control (QC) materials were prepared in deionized water at four concentration levels by spiking known amounts of primary standards of gallic acid, caffeine, epicatechin and ( )-epigallocatechin gallate at concentrations of 3, 4, 7 and 5 μg/ml. QC materials were analyzed for method validation and during sample analysis to ensure the quality of the data. Each QC material was Table Results obtained for the validation of the HPLC/UV method used in the current study Tea component Concentration (µg/ml) Accuracy (µg/ml) Precision LOD (μg/ml) LOQ (μg/ml) Within run Between run Gallic acid 3 2.9 ± 0. 3.8 4. 0.4.2 4 4. ± 0.3 5. 7.4 7 7.2 ± 0.5 3.0 6.6 5 5.0 ±.0.9 7.0 Caffeine 3 3. ± 0. 2. 4.6 0.7 2.2 4 4.0 ± 0.2 3.4 6.4 7 7.2 ± 0.4 0.9 5.5 5 5.5 ± 0.9.6 6.0 Epicatechin 3 3.0 ± 0. 2.3 2.0.3 3.8 4 4.3 ± 0.3 3.3 6.9 7 6.8 ± 0.4 2.8 5.5 5 4.5 ±.0 0.8 6.6 Epigallocatechin gallate 3 3.0 ± 0. 3.6 3.9 0.7 2.2 4 3.8 ± 0. 6.2 2.3 7 6.5 ± 0.4 2.7 6.7 5 5.4 ± 0.9 2.8 5.9

Page 4 of 5 dispensed into.5 ml microcentrifuge tubes and stored at 20 C until further use. Determination of GA, Caf, EC and EGCG using reversed phase high pressure liquid chromatography (RP HPLC) Chromatographic resolution of components in tea was achieved on a betasil phenyl HPLC column. The mobile phase constituted of isocratic elution system of 8 % acetonitrile, % glacial acetic acid and 9 % deionized water at a flow rate of 0.5 ml/min. The detection wavelength was at 280 nm. β-hydroxyethyltheophilline prepared in deionized water (0 μg/ml) was used as the internal standard. Calibration curves (2.5 25 μg/ml) were constructed with peak area ratio of GA, Caf, EC and EGCG (ratio of peak area of the relevant standard to that of the internal standard) against the concentration for a mixture prepared from the same. Tea samples were diluted at :5 ratio for the quantification of GA, EC and EGCG and :50 for the quantification of Caf. Diluted test samples or standards (00 μl) were mixed with β-hydroxyethyltheophilline (0 μg/ml; 00 μl) followed by centrifugation (2000 rpm; 5 min) and the supernatant (25 μl) was injected onto the column. The peaks were identified by comparing the retention times of the components in tea with that of the authentic standards. Validation of the RP HPLC method The HPLC method was validated according to FDA guide lines (Food and Drug administration 200). Accuracy, within run and between run precision, linearity, limit of detection (LOD) and limit of quantitation (LOQ) validation parameters were evaluated according to the guidelines provided. The slope and intercept of the calibration curves were calculated through least squares linear regression analysis using Microsoft Excel Program. The slope and the intercept of the calibration curves were observed over a period of 6 weeks using six independent series of the calibration standards prepared as described earlier. The calibration plot was accepted if R 2 > 0.99. QC materials (n = 6) at four concentration levels i.e., 3, 4, 7 and 5 μg/ml prepared similar to the unknown samples were repeatedly measured to determine the accuracy of the measurements. The interday (n = 6) precision of the HPLC method was investigated by repeat analysis of the same QC materials over a period of six successive weeks and evaluating the coefficient of variation (%CV). The within run precision (n = 6) was investigated by repeat analysis of the QC materials at a continuous run within a period 24 h and evaluating the coefficient of variation (%CV). The limit of detection (LOD) and limit of quantification (LOQ) for each of the components measured in tea samples were calculated as follows. Standard error of the y intercept (δ) and the slope of the calibration curve (S) were determined for the calibration curve of each of the standards. LOD and LOQ were calculated as 3.3 and 0 δ/s respectively (Taylor 987). Long term stability of the GA, Caf, EC and EGCG was evaluated by repeat analysis of the QC material stored at 20 C for over a period of 6 weeks. All the experiments were carried out at room temperature. Analysis of tea samples Deionized water (500 ml) was boiled in a glass beaker placed on a magnetic stirrer. At the onset of boiling, heating was stopped and tea leaves (5.0 g) was added to boiled water and beaker was covered with watch glass continuing stirring at a constant speed. Samples (.0 ml) were withdrawn at 8 min and centrifuged. GA, Caf, EC, EGCG were quantified by the developed reversed phase high pressure liquid chromatography method. Tea brew prepared separately were analyzed in replicates (n = 6). Statistical analysis Results are presented as mean ± standard deviation (Mean ± SD) of six independent experiments. Statistical analysis was performed using Microsoft Excel. Authors contributions CDF conducted all experiments and drafted the manuscript. PS designed the study, supervised the project and revised the manuscript. Both authors read and approved the final manuscript. Author details Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo 08, Sri Lanka. 2 College of Chemical Sciences, Institute of Chemistry Ceylon, Adamantane House, 34/22, Kotte Road, Welikada, Rajagiriya, Sri Lanka. Acknowledgements The authors wish to acknowledge the financial assistance received from National Science Foundation Sri Lanka (Grant number RG/2005/HS/7) and Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo. Competing interests The authors declare that they have no competing interests. Received: 20 January 206 Accepted: 24 June 206 References Churácek JP (985) Gradient elution in column liquid chromatography: theory and practice. Elsevier, Amsterdam Fernando CD, Soysa P (205) Extraction kinetics of phytochemicals and antioxidant activity during black tea (Camellia sinensis L.) brewing. Nutr J 4:74 Food and Drug administration, Guidance for Industry: bioanalytical method validation. 200. http://www.fda.gov/downloads/drugs/guidances/ ucm07007.pdf. Accessed 9th Dec 205

Page 5 of 5 He Q, Lv Y, Zhou L, Shi B (200) Simultaneous determination of caffeine and catechins in tea extracts by HPLC. J Liq Chromatogr Relat Technol 33:49 498 Janoušková J, Budinská M, Plocková J, Chmelıḱ J (200) Optimization of experimental conditions for the separation of small and large starch granules by gravitational field-flow fractionation. J Chromatogr A 94():83 87 Pesta DH, Angadi SS, Burtscher M, Roberts CK (203) The effects of caffeine, nicotine, ethanol, and tetrahydrocannabinol on exercise performance. Nutr Metabol 0:7 Saito ST, Welzel A, Suyenaga ES, Bueno F (2006) A method for fast determination of epigallocatechin gallate (EGCG), epicatechin (EC), catechin (C) and caffeine (CAF) in green tea using HPLC. Food Sci Technol 26(2):394 400 Schellinger AP, Stoll DR, Carr PW (2005) High speed gradient elution reversedphase liquid chromatography. J Chromatogr A 2:43 56 Taylor JK (987) Quality assurance of chemical measurements. Lewis Publishers, Chelsea, pp 78 83 Yashin AY, Nemzer BV, Combet E, Yashin YI (205) Determination of the chemical composition of tea by chromatographic methods: a review. J Food Res 4(3):56