Nutrient Composition and Characteristics of Cow Milk Yogurt with Different Additional Fruit and Storage Time

Similar documents
EFFECTS OF 1-METHYLCYCLOPROPENE (1-MCP) COUPLED WITH CONTROLLED ATMOSPHERE STORAGE ON THE RIPENING AND QUALITY OF CAVENDISH BANANA ABSTRACT

The aroma, body and flavor of yogurt

INTRODUCTION probiotics Fermentation

ASSESSMENT OF NUTRIENT CONTENT IN SELECTED DAIRY PRODUCTS FOR COMPLIANCE WITH THE NUTRIENT CONTENT CLAIMS

BEEF Effect of processing conditions on nutrient disappearance of cold-pressed and hexane-extracted camelina and carinata meals in vitro 1

Evaluation of Gouda cheese available in the Egyptian market.

Quality characteristics of set yoghurt blended with Tender Coconut Water Milk - Carrageenan

Preparation of Lassi from safflower milk blended with buffalo milk

Product Catalogue. Experience, Technology, Products

NOVEL NON-DAIRY YOGHURT FROM PIGEON PEA MILK

Development and Quality Evaluation of Yoghurt Fortified with Pineapple, Apple and Sweet Lemon Juice (Fruit Yoghurt)

The Effect of Various Protein Sources On the Quality of Chocolate Chip Muffins

The study on SFLAB GanedenBC 30 viability on baking products during storage

1 The Quality of Milk for Cheese Manufacture (T.P. Guinee and B. O'Brien). 1.5 Factors affecting the quality of milk for cheese manufacture.

Process standardization of low-calories and low-sugar kalam

The Use and Misuse of Fruit Juice in Pediatrics

Tofu is a high protein food made from soybeans that are usually sold as a block of

Studies on Preparation of Mango-Sapota Mixed Fruit Bar

Supplementation of Beverages, Salad Dressing and Yogurt with Pulse Ingredients. Summary of Report

QUALITY CHARACTERISTICS OF CHEESE PRODUCED FROM THREE BREEDS OF CATTLE IN NIGERIA

ABSTRACT. Keywords: buffalo s milk, cream cheese, malunggay, sensory quality INTRODUCTION

Ripening stage effect on nutritional value of low fat pastry filled with sweet cherries (P. avium, cv. Ferrovia )

'Every time I eat dairy foods I become ill, could I have a milk allergy.? '. Factors involved in the development of cow's milk allergy:

Step 1: Brownie batter was prepared for each oil variation following the recipe on the Betty Crocker brownie mix box.

EFFECT OF STERILITY (F 0 ) VALUE AT DIFFERENT CANNING TEMPERATURES ON THE PHYSICAL PROPERTIES OF CANNED GUDEG

Forestry, Leduc, AB, T9E 7C5, Canada. Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada. *

Pascual Corporation Business Structure

Plant Population Effects on the Performance of Natto Soybean Varieties 2008 Hans Kandel, Greg Endres, Blaine Schatz, Burton Johnson, and DK Lee

PHYSICAL AND CHEMICAL QUALITY APPRAISAL OF COMMERCIAL YOGHURT BRANDS SOLD AT LAHORE

Performance Analysis of Industrially and Traditionally Used Cultures in Yogurt Production Considering Microbial Risk

The miraculous power of Bulgarian yogurt. Created by LB BULGARICUM

Paper 6 Food Biotechnology F06FB24 Fermented Milk Products Curd (Indian Dahi), Buttermilk and Cheese

2015 Dairy Foods CDE Exam 4-H and Jr Consumer Division

NUTRITIONAL CHARACTERISTICS EVALUATION OF MALAYSIAN COMMERCIAL PINEAPPLE CULTIVARS CHONG HANG CHIET UNIVERSITI TEKNOLOGI MALAYSIA

Milk An opaque white fluid rich in fat and protein, secreted by female mammals for the nourishment of their young.

DEVELOPMENT OF MILK AND CEREAL BASED EXTRUDED PRODUCTS

bag handling Poor technology High Technology Bulk handling mechanized

Quality INVESTIGATION of Rice Noodles Safe from Gluten

Yogurt Making. Basic Steps 1. Heat milk 2. Stir in yogurt starter 3. Incubate milk to become yogurt

COMPARATIVE ANALYZE BETWEEN CHEESES OBTAINED FROM UNPASTEURIZED AND PASTEURIZED MILK. Abstract. Introduction

Milk and Dairy Food Lecture

Agriculture Update 12 TECHSEAR preparation of Kulfi with ginger extract. and T 3 OBJECTIVES

Preliminary Studies on the Preservation of Longan Fruit in Sugar Syrup

Milk And Milk Processing

MANUFACTURE OF GOLDEN MILK SHAKE FROM COW MILK BLENDED WITH SAFFLOWER MILK

ACCEPTABILITY CHARACTERISTICS OF DRAGON FRUIT CUPCAKE

Modern Technology Of Milk Processing & Dairy Products (4th Edition)

To study the effect of microbial products on yield and quality of tea and soil properties

Paper No.: 02. Paper Title: Principles of The food processing & preservation. Module 21: Food Fermentation

Pressurized Yoghurt as a Carrier of Probiotic Bacteria

Effects of Different Packaging Materials on the Shelf Stability of Ginger Juice

Effect of Different Levels of Grape Pomace on Performance Broiler Chicks

Replacement of cow milk chhana with soy chhana in the preparation of rasomalai

THE EFFECT OF DIFFERENT APPLICATIONS ON FRUIT YIELD CHARACTERISTICS OF STRAWBERRIES CULTIVATED UNDER VAN ECOLOGICAL CONDITION ABSTRACT

Maurya Shalini 1, Dubey Prakash Ritu 2 Research Scholar 1, Associate Professor 2 Ethelind College of Home Science, SHUATS Allahabad, U.P.

91.6% of UK households bought yogurt in 2015

Studies on Sensory Evaluation of Jamun Juice Based Paneer Whey Beverage

Vegan Ice Cream with Similar Nutritional Value to Dairy-based Ice Cream

Research & Reviews: Journal of Food and Dairy Technology

Development of Value Added Products From Home-Grown Lychee

Production, Optimization and Characterization of Wine from Pineapple (Ananas comosus Linn.)

SENSORY EVALUATION AND OVERALL ACCEPTABLILITY OF PANEER FROM BUFFALO MILK ADDED WITH SAGO POWDER

The Effect of Green Tea on the Texture, Taste and Moisture of Gharidelli Double Chocolate Brownies

Avocado sugars key to postharvest shelf life?

Audrey Page. Brooke Sacksteder. Kelsi Buckley. Title: The Effects of Black Beans as a Flour Replacer in Brownies. Abstract:

EFFECT OF DIFFERENT METAL CONTAINING VESSELS ON CURD FERMENTATION BY LACTIC ACID BACTERIA

BENEFITS OF DANISCO KEFIR CULTURES

Materials and Methods

GELATIN in dairy products

Oregon Wine Advisory Board Research Progress Report

Effects of Ground Chickpea as Wheat Flour Replacer in Corn Muffins B.A. Hollingsworth

MTP Gold Medal International Trade Fair for Food POLAGRA FOOD 2018

1. Identify environmental conditions (temperature) and nutritional factors (i.e. sugar and fat) that encourages the growth of bacteria.

Bioline International

Analysing the shipwreck beer

The right impact on taste and texture YOGHURT APPLICATION BROCHURE

The US Yogurt Market: Size, Trends & Forecasts ( ) March 2018

THE FERMENT WARS Keeping Your Gut Healthy!

Dairy foods provide many valuable nutrients. Dairy foods come in a variety of flavors and forms. They are an important part of a healthful diet.

Living Factories. Biotechnology SG Biology

l?\ DEVELOPMENT OF CARBONATED HERBAL NELLI DRINK 1~~9647 Kushan Chanaka Amarasinghe p.,101)..'\

Food Science and Technology Notes

Bread. Guided Inquiry Activity #27

GUIDELINES TO DETERMINE THE EFFECT OF FUNGICIDAL AGRICULTURAL REMEDIES ON FERMENTATION PROCESSES AND WINE QUALITY

Evaluation of quality of mozzarella cheese

INSTRUCTIONS FOR CO-INOCULATION

Effect of Storage Period and Ga3 Soaking of Bulbs on Growth, Flowering and Flower Yield of Tuberose (Polianthes Tuberosa L.) Cv.

You know what you like, but what about everyone else? A Case study on Incomplete Block Segmentation of white-bread consumers.

Is watering our houseplants with washed rice water really that effective? Here s the scientific evidence

Enzymatic Hydrolysis of Ovomucin and the Functional and Structural Characteristics of Peptides in the Hydrolysates

Development of yogurt with bioactive molecules

F&N 453 Project Written Report. TITLE: Effect of wheat germ substituted for 10%, 20%, and 30% of all purpose flour by

Studies on Fortification of Solar Dried Fruit bars

Make & Taste Dairy. Greek Yogurt (Grades 3-5) thedairyalliance.com. Lesson Activity

RMUTP Research Journal Special Issue

TURKISH FOOD CODEX COMMUNIQUÉ ON FERMENTED MILK PRODUCTS (DRAFT/2015)

Preparation of a malt beverage from different rice varieties

Effects of Leaf Removal and UV-B on Flavonoids, Amino Acids and Methoxypyrazines

EXPERTS AGREE HFCS IS SAFE AND NUTRITIONALLY THE SAME AS TABLE SUGAR.

Preparation of strawberry Lassi

Transcription:

Nutrient Composition and Characteristics of Cow Milk Yogurt with Different Additional Fruit and Storage Time Putri Dian Wulansari and Andri Kusmayadi Study Programe of Animal Science, University of Perjuangan Tasikmalaya, Jl. Peta No 177 Tasikmalaya, Indonesia Corresponding author email: callmeuput@gmail.com Abstract. This research was aimed to evaluate the composition (total solids, water content, fat and protein), qualitative properties (color, aroma, and texture) and quantitative properties (free fatty acid and lactic acid) of cow milk yogurt with different fruits addition and storage time. Experimental method applied Completely Randomized Design with five treatments namely control, dragon fruit, mango, apple and banana (20% v/v), each with 5 replicates. Qualitative characteristic assessment was conducted on 0, 5, 10 and 15 days of storage. Result showed that fruit addition significantly affected the composition and characteristics, while storage time significantly affected quantitative characteristics of yogurt. Apple and banana increased 13% total solids of plain yogurt, while the highest fat content (4.516%) was observed in control yogurt which had the lowest protein content (2.564%). The highest free fatty acid was in control yogurt ripen for 15 days (22.885%) while the lowest free fatty acid was in mango yogurt ripen for 10 days (13.915%). Fruit addition in yogurt ripen for 15 days at 5C resulted in a safe consumed product. Key words : yogurt, fruit yogurt, cow milk, storage Abstrak. Penelitian bertujuan mengevaluasi komposisi (total solids, kandungan air, lemak, dan protein) dan sifat kualitatif (warna, bau, dan tektur) dan kuantitatif (free fatty acid dan kadar asam laktat) yogurt dari susu sapi dengan penambahan buah dan lama penyimpanan yang berbeda. Metode penelitian eksperimental menggunakan Rancangan Acak Lengkap dengan lima perlakuan yaitu kontrol (yogurt plain), buah, mangga, apel dan pisang (penambahan buah sebanyak 20% v/v). Masing-masing perlakuan dilakukan pengulangan sebanyak 5 kali. Pengujian kualitatif dilakukan pada umur penyimpanan 0, 5, 10, dan 15 hari. Hasil penelitian menunjukkan bahwa penambahan buah berpengaruh nyata terhadap komposisi dan sifat kualitatif begitu juga lama penyimpanan berpengaruh nyata terhadap sifat kuantitatif yogurt. Penambahan buah apel dan pisang meningkatkan total solid sebanyak 13% dari yogurt plain, sedangkan kandungan lemak paling tinggi (4,516%) dihasilkan oleh yogurt kontrol, berbanding terbalik dengan kandungan protein yang dihasilkan, yaitu yogurt kontrol menghasilkan kandungan protein paling rendah (2,564%). Free fatty acid yang paling tinggi dihasilkan pada yogurt kontrol dengan lama penyimpanan 15 hari (22,885%) sedangkan free fatty acid paling rendah dihasilkan oleh yogurt dengan penambahan buah mangga pada umur penyimpanan 10 hari (17,588%). Kadar asam laktat paling tinggi dihasilkan oleh yogurt mangga pada penyimpanan 15 hari (21,293%) sedangkan paling rendah pada yogurt plain pada penyimpanan 10 hari (13,915%). Penambahan buah menghasilkan produk yang aman untuk dikonsumsi dengan masa simpan 15 hari pada suhu 5 o C. Kata kunci : yogurt, yogurt buah, susu sapi, penyimpanan Introduction Yogurt is a trending fermented milk product in society due to the many benefits of consuming yogurt. The benefits are (1) improving lactose absorption in lactose intolerant patient and heal diarrhea (Kolars et al., 1984; Guarner et al., 2005), (2) improving lactose tolerance and decreasing body weight (body fat loss) (McKinley, 2005), (3) lowering cholesterol (Marete et al., 2010), (4) improving body immune, minimizing digestive inflammation symptoms, increasing productivity, nutrient intake and tolerance to antiretroviran in HIV patient (Irvine et al., 2010), (5) improving metabolism, preventing chronical inflamation disorder, intestin functional disorder, infection and alergy (Rijkers et al., 2010). (6) maintaining the balance of intestine and urogenital flora, preventing colon irritation, 113

constipation, urogenital infection, osteoporosis, anorexia nervosa and premenstruation syndrome, warding off menopause and improving bone health (Vrese, 2009). Yogurt product has various market segments namely fruits flavoured, low calorie yogurt, whipped yogurt, mild yogurt, hard and soft yogurt, yogurt drink, yogurt with probiotic culture, long life yogurt, yogurt for breakfast dan yogurt for toodlers (Chandan, 2006). Various types of yogurt are set yogurt, stirred yogurt, sweet drinking yogurt, fruit yogurt, yogurt cheese, frozen yogurt dan dried yogurt (Yildiz, 2010). From all yogurt categories, 74% is yogurt mixed with fruit (fruit yogurt). Additional fruit flavor, pure fruit of fruit extract can improve taste, color and texture flexibility of yogurt to consumers. Fiber in the fruit adds more benefit when consuming fruit yogurt namely preventing colon disease. Some fruits even contain antioxidant. Fruit yogurt give a more healthy benefit. Fruit addition in yogurt improve taste and nutrition value of the yogurt. Fruit yogurt also plays a significant role in the rate of yogurt selling and consumption (Cakmakcii et al., 2012). Yogurt characteristics based on SNI 01-2981- 2009 are containing 12% total solids. The contributing factors to yogurt produced are milk total solids, milk composition, homogeny, the types of starter bacteria, pasteurization, fermentation process and temperature during incubation (Magenis et al., 2006; Lee and Lucey, 2010). The addition of dragon fruit, mango, apple and banana with different composition is assumed to affect the final yogurt product. Total solids of dragon fruit is 12.50% (To et al., 2000), mango is 16% (Mulyawanti et al., 2008), apple is 17.08% and banana is 17.51% (Mahmood et al., 2008). Adding fruit with different total solids in yogurt is expected to affect the characteristics and total solids of the fruit yogurt. Materials and Method The research used 50 liters of fresh cow milk obtained from Pratama Trading farm, Sindangkasih district, Ciamis region West Java. Culture starter used was dry starter containing Streptococus termophillus, Lactobacillus acidophillusand Lactobacillus bulgaricus. The fruits added were dragon fruit, mango, apple and banana 2 kg each. Substances for chemical analysis included aquadest, NaOH, alcohol, phenolptalin solution, buffer 4 and 7 and other chemicals for protein and lipid analysis. The Research were designed by Completely Randomized Design method (Steel and Torrie, 1996) with five replicates and the treatments were fruit addition (zero fruit/control, dragon fruit, mango, apple and banana). Research procedure started with milk pasteurization using HTST (High Temperature Short Time), milk temperature was lowered to 45 o C, added with 10% culture bacteria, and incubated for 6h at 45 o C. The yogurt product was added with 20% (v/v) of each treatment for qualitative properties analysis at 0, 5, 10 and 15 days of storage. Results and Discussion Composition The obtained data showed that different fruits added to the yogurt affected water content, total solids, fat and protein content (P>0.01) (Table 1). Apple and banana produced yogurt with the highest total solids (14.376%). Previous findings indicated different fruits had different composition and total solids namely 12.50% in dragon fruit (To et al., 2000), 16% in mango (Mulyawanti et al., 2008), 17.08% in apple and 17.51% in banana (Mahmood et al., 2008). Apple and banana addition with 17.3% total solids resulted in fruit yogurt with the highest total solids (14.376%) or increasing 13% total solids from control yogurt. 114

Fat and protein content is affected by different fruits added in the yogurt (P>0.01) (Table 1). The highest fat content was in control yogurt (4.516%); in contrast, the lowest protein content (2.564%) was also in control yogurt. This finding reported a higher total solids and fat content but lower protein than that of Ozer (2006) namely 13.85% vs 12.5%, 3.57% vs 3.3%, and 3.27% vs 3.9% respectively. The contributing factors of yogurt are total solids, milk composition, homogeny, types of starter bacteria, pasteurization, fermentation process and temperature (Magenis et al., 2006, Lee and Lucey, 2010). Research result indicated that additional fruit with different total solids affected the yogurt product. Characteristics Characteristics of yogurt is determined in qualitative and quantitative. The qualitative properties of yogurt are smooth texture, color and aroma in accordance with the additional fruit. White yogurt was for control, dragon fruit and banana yogurt, yellow for mango yogurt and light brown for apple yogurt. Color change in yogurt during storage time (0, 5, 10, and 15 days) was obvious in banana yogurt that turned brown as the week passed, while the other fruit yogurt did not change. Yogurt aroma and texture in day 15 remained typically fragrant and smooth. Banana yogurt had the strongest aroma in each storage time. The obtained data showed that different fruits added in each storage time affected the product s free fatty acidand lactic acid (P>0.01) (Table 2). Free fatty acid is an independent fatty acid unbound by triglyceride and serves as the parameter of product quality assessment. The highest and the lowest free fatty acid was in control stored for 15 days (22.885%) and in mango yogurt stored for 10 days (17.588%), respectively. The longer storage time, the higher free fatty acid content in plain and dragon fruit yogurt. The highest free fatty acid in control yogurt was assumedly due to the more optimum bacteria performance without additional fruit, while fruit yogurt had a substance that inhibited hydrolysis and oxidation supported by bacteria. Hydrolysis and oxidation gave a strong characteristic and flavor and might be the precursor of other substances. It was in line with Gurakan and Altay (2010) that typical aroma and texture of yogurt was the result of microorganism performance. The highest and lowest lactic acid was in mango yogurt stored for 15 days (21.293%) and plain yogurt stored for 10 days (13.915%), respectively. Lactic acid in yogurt was formed after milk inoculation with bacteria starter; Streptococcus thermophillus grew up to 90% of other bacteria. The next two hours, Streptococcus thermophillus released lactic acid, carbon dioxide and formic acid. Lactobacillus bulgaricussynergized to stimulate faster growth and grew after the milk turned acidic, while Streptococcus was inhibited due to lactic acid accumulation. Lactobacillus bulgaricus played role to the decrease up to ph 4. On the other hand, proteolytic activity of Lactobacillus bulgaricus resulted in peptide and amino acid stimulation to be used by Streptococcus thermophillus. Yogurt started to coagulate due to ph decrease. Table 1.Composition of Cow Milk Yogurt with Different Fruits Addition Treatment Water content Total solids Fat content Protein content Control 87.776±0.545 c 12.724±0.54 a 4.516±0.39 c 2.564±0.358 a P1 (Yogurt + dragon fruit) 86.372±0.558 ab 13.628±0.558 bc 3.698±0.2155 b 2.712±0.488 a P2 (Yogurt + mango) 86.892±0.557 bc 13.108±0.557 ab 3.178±0.177 a 3.304±0.241 b P3 (Yogurt + apple) 85.614±0.706 a 14.376±0.706 c 3.906±0.233 b 3.504±0.459 b P4 (Yogurt + banana) 85.624±0.791 a 14.376±0.791 c 3.554±0.346 b 3.594±0.275 b 115

Table 2. Free Fatty Acid and Lactic Acid of Yogurt with different additional fruits and storage time Free fatty acid (%) Lactic acid (%) Treatment Storage time (days) 0 5 10 15 0 5 10 15 Control 20.435± 0.416 a 21.437± 0.404 b 21.433± 0.208 b 22.885± 0.166 c 16.305± 0.754 c 15.556± 0.198 b 13.915± 0.134 c 15.344± 0.105 b P1 (Yogurt + dragon fruit) 19.304± 0249 a 20.983± 0.271 b 20.834± 0.197 b 22.773± 0.247 c 14.942± 0.307 c 14.697± 0.106 b 13.934± 0.032 a 16.523± 0.101 d P2 (Yogurt + mango) 17.989± 0.584 a 19.739± 0.404 b 17.588± 0.418 a 19.485± 0.143 b 16.161± 0.335 c 14.918± 0.251 b 14.294± 0.201 a 21.293± 0.139 d P3 (Yogurt + 19.565± 19.731± 19.276± 18.044± 14.509± 14.225± 14.294± 17.856± apple) P4 (Yogurt + banana) 0.340 c 21.517± 0.398 a 0.303 c 22.575± 0.298 b 0.108 b 21.552± 0.343 a 0.106 a 22.207± 0.148 b 0.292 c 15.671± 0.366 b 0.285 b 16.278± 0.104 d 0.201 a 15.581± 0.156 d 0.037 d 19.236± 0.229 d After 4 hours, balance among population was reached. The final fermentation had 1.2-1.4 % acidity (Gurakan and Altay, 2010). Yildiz (2010) explained a more simple process of lactic acid formation; it was produced by bacteria by dissolving glucose into lactic acid as metabolic product so milk acidity increased and coagulated known as denaturation process. Yogurt storage is significantly affected by the temperature. This research measured qualitative (color, texture and aroma) and quantitative properties (lactic acid and free fatty acid) on 0, 5, 10 and 15 days at 5 o C. Result indicated the effect of storage time on lactic acid and free fatty acid. Yogurt stored for 5 days was still consumable considering the data of qualitative and quantitative properties assessment. In qualitative observation yogurt stored for 15 days showed similar texture, aroma and color to that of 0 day (despite color change in banana yogurt). Accordingly, this research stated that storage at 5 o C for 15 days resulted in consumable yogurt. In line with Hayaloglu et al. (2007), storage temperature significantly affected yogurt storage time. Stored at 25-30 o, yogurt only stands for one day, but 5 days at 7 o C and 10 days at 4 o C. Slight difference with this research is the additional fruit lengthens the storage time. The longer storage time was due to the increased acidity as reported in the previous findings. Yildiz (2010) stated that longer storage time in yogurt was due to increasin acidity that prevent the proliferation of patogen bacteria. Increasing acidity occurred because bacteria digested milk sugar then released lactic acid as metabolic product thereby increasing milk acidity and causing coagulation known as denaturation process. Longer storage time of yogurt added with fruit might due to higher acidity as well as metabolic bacteria or the fruit acidity. Conclusions Result showed that cow milk yogurt added with different fruits affected composition (total solids, water content, crude fat and crude protein) and characteristics (lactic acid and free fatty acid). Fruit addition affected yogurt product and resulted in yogurt with relatively longer storage time. References Cakmakcii SBC, T Turgut and M Gurses. 2012. Probiotic properties, sensory qualities, and storage stability of probiotic banana yogurts. Turk. J. Vet. Anim. Sci. 36(3):231-237. Chandan RC. 2006. History and Consumption. In : RC Chandanet al.,(eds), Manufacturing yogurt and fermented milks. Blackwell Publishing. Oxford. Pp 4-14. Guarner FG, G Perdigon, G Corthier, S Salminen, B Koletzko and L Moreli. 2005. Should Yogurt 116

Culture be Considered Probiotic. British Journal of Nutrition. 93(6):783-786. Gurakan GC and N Altay. 2010. Yogurt Microbiology and Biochemistry. In: Development and Manufacture of Yogurt and Other Functional Dairy Product. F. Yildiz (Ed). CRC Press, Taylor & Francis Group.Boca Raton, USA. Pp. 98-116 Hayaloglu A, I Karabulut, M Alpaslan and G Kelbaliyev. 2007. Mathematical Modeling of Drying Chacarteristics of Strained Yogurt in Convective Tyoe Tray-Dryer. Journal of Food Engineering. 78(1):109-117. Irvine SL., R Hummelen, S Hekmat, CW Looman, JDF Habbema and G Reid. 2010. Probiotic Yogurt Consumption is Associated with An Increase of CD4 Count Among People Living with HIV/AIDS. Journal of clinical gastroenterology. 44(9):201. Kolars JC, MD Levitt, M Aouji and DA Savaiano. 1984. Yogurt-An Autodigesting Source of Lactose. New England Journal of Medicine. 310(1):1-3. Lee W and J Lucey. 2010. Formation and physical Properties of yogurt. Asian-Aust. J. Animal. 23(9): 1127-1136. Magenis RB, ES Prudencio, RDMC Amboni, NGC Junior, RVB Oliveira, V Soldi and HD Benendet. 2006. Compotition and Physical Properties of Yogurt Manufacture from Milk and Whey Cheese Concentrated by Ultrafiltration. International journal of Food Science. 41(5):560-568. Mahmood A, N Abbas and AH Gilani. 2008. Quality Stirred Buffalo Blended Apple and Banana Fruits. Park. J. Agri. Sci. 45:275-279. Marete S, RJS Blanchemanche and E Feinblantt- Meleze. 2010. Functional Food, Uncertainly and Consumers Choices : A Lab Experiment with Enriched Yogutys for Lowering Cholesterol. Food Policy. 35(5):419-428. McKinley MC. 2005. The Nutrition and Health Benefits of Yogurt. International of Dairy Technologi. 58(3):129-137. Mulyawanti I, KT Dewandari and Yulianingsih. 2008. Pengaruh Waktu Pembekuan dan Penyimpanan terhadap Characteristics Irisan Buah Mango Arumanis Beku. J. Pascapanen. 5(1):51-58. Ozer B. 2006. Production of Concentrated Products. In : A. Tamime (Eds). Fermented Milk. Blackwell Science Ltd. New York. USA. Pp 28-155. Rijkers GT, S Bengmark, P Enck, D Haller, U Herz, M Kalliomaki, S Kudo, I Lenoir-Wijnkoop, A Mercenier and E Myllyluoma. 2010. Guidance for Substantiating the Evidence for Beneficial Effects of Probiotics: Current Status and Recommendations for Future Research. The Journal of nutrition. 140(3):671S. Steel RG and JH Torrie. 1996. Principles and Procedurs of Statistics. Published, McGraw-Hill Book Company. To LV, N Ngu, ND. Duc, DTK Trinh, NC Thanh, DVH Mien, CN Hai and TN Long, Eds. 2000. Quality Assurance System for Dragon Fruit Quality assurance in agricultural produce. In: Quality Assurance in Agricultural Produce. G.I. et al., (Ed). ACIAR Proceedings 100. Vietnam. Pp. 111-110. Vrese MD. 2009. Health Benefits of Probiotics and Prebiotics In Women. Menopause International. 15(1):35-40. Yildiz F. 2010. Overview of Yogurt and Other Fermented Dairy Product. In: Development and Manufacture of Yogurt and Other Fucntional Dairy Product. F. Yildiz. CRC Press, New York, USA. Pp:1-46. 117