As part of a larger study to

Similar documents
(36) PROHEXADIONE-CALCIUM AFFECTS SHOOT GROWTH AND YIELD OF LEMON, ORANGE AND AVOCADO DIFFERENTLY

Use of Plant Growth Regulators to Increase Fruit Set, Fruit Size and Yield and to Manipulate Vegetative and Floral Shoot Growth

Flowering and Fruiting Morphology of Hardy Kiwifruit, Actinidia arguta

PGR Strategies to Increase Yield of Hass Avocado

NAME OF CONTRIBUTOR(S) AND THEIR AGENCY:

Influence of Cultivar and Planting Date on Strawberry Growth and Development in the Low Desert

Materials and Methods

Effect of Storage Period and Ga3 Soaking of Bulbs on Growth, Flowering and Flower Yield of Tuberose (Polianthes Tuberosa L.) Cv.

CHEMICAL THINNING OF APPLE UNDER NORWEGIAN CONDITIONS. WHAT WORKS?

Achieving larger Ettinger fruit by foliar application of Plant Growth Regulators (PGRs)

USING AN Ascophyllum KELP EXTRACT AND AN AMINO ACID MIXTURE TO HASTEN THE GROWTH IN NURSERY OF RECENTLY BUDDED TAHITI LIME (Citrus latifolia TANAKA)

WALNUT HEDGEROW PRUNING AND TRAINING TRIAL 2010

Improving Efficacy of GA 3 to Increase Fruit Set and Yield of Clementine Mandarins in California

Vegetative growth and fruit retention in avocado as affected by a new plant growth regulator (Paclobutrazol)

Effect of Pruning Severity and Branch Quality on Fruit Set and Fruit Dry Weight of Packham s Triumph Pears (Pyrus communis L.)

Effect of Inocucor on strawberry plants growth and production

COMPARISON OF SEEDING RATES AND COATING ON SEEDLING COUNT, ROOT LENGTH, ROOT WEIGHT AND SHOOT WEIGHT OF CRIMSON CLOVER

Influences of Elevation on Growth and Yield of Strawberry in Thailand

Module 6. Yield and Fruit Size. Presenter: Stephan Verreynne

Evaluation of desiccants to facilitate straight combining canola. Brian Jenks North Dakota State University

Red Clover Varieties for North-Central Florida

WINE GRAPE TRIAL REPORT

Berelex. Introducing 40 SG. Berelex 40 SG Plant Growth Regulator A 21 st century formulation for fruit and vegetable management

Southwest Indiana Muskmelon Variety Trial 2013

VEGETATIVE FLUSHING AND FLOWERING OF MACADAMIA INTEGRIFOLIA IN HAWAII

NITROGEN ALLOCATION WITHIN THE 'HASS' AVOCADO

Irradiation of seeds of Pineapple orange resulted in the generation of a mutant,

Relationship between Mineral Nutrition and Postharvest Fruit Disorders of 'Fuerte' Avocados

Evaluation of Organic Cucumber, and Summer and Winter Squash Varieties for Certified Organic Production Neely- Kinyon Trial, 2005

PHENOLOGICAL BEHAVIOUR AND EFFECT OF DIFFERENT CHEMICALS ON PRE-HARVEST FRUIT DROP OF SWEET ORANGE CV. SALUSTIANA

Results and Discussion Eastern-type cantaloupe

sites for disease entry, in particular citrus canker. ACP is an even more recent arrival in Florida

Using Growing Degree Hours Accumulated Thirty Days after Bloom to Help Growers Predict Difficult Fruit Sizing Years

F. S. DAVIES AND L. K. JACKSON

Final Report to Delaware Soybean Board January 11, Delaware Soybean Board

Effects of Seedling Age, and Different Levels of N, K and K/N on Quality and Yield of Tomato Grown in Perlite Bag Culture

STEM ELONGATION AND RUNNERING IN THE MUTANT STRAWBERRY, FRAGARIA VESCA L.

A new approach to understand and control bitter pit in apple

Managing crop load with Artifical Spur Extinction

G. Ferrara 1, A. Mazzeo 1, A.M.S. Matarrese 1, C. Pacucci 1, V. Gallo 2,3

1. Title: Identification of High Yielding, Root Rot Tolerant Sweet Corn Hybrids

AAB BIOFLUX Advances in Agriculture & Botanics- International Journal of the Bioflux Society

1986 Atwood Navel Orange Rootstock Trial at Lindcove.

University of California Cooperative Extension Tulare County. Grape Notes. Volume 3, Issue 4 May 2006

HORTSCIENCE 52(4): doi: /HORTSCI

Effect of paraquat and diquat applied preharvest on canola yield and seed quality

THE EFFECT OF ETHYLENE UPON RIPENING AND RESPIRATORY RATE OF AVOCADO FRUIT

THE EFFECT OF GIRDLING ON FRUIT QUALITY, PHENOLOGY AND MINERAL ANALYSIS OF THE AVOCADO TREE

Fungicides for phoma control in winter oilseed rape

Soybean Seeding Date Effects on Productivity Jane Froese 1, Bruce Brolley 2 and Derek Lewis 1

Effect of paraquat and diquat applied preharvest on canola yield and seed quality

Effect of Thinning of Mandarin. on Yield and Fruit Quality. Mohammad Abd-El- Jaber Alabdallah. Supervisor. Prof. Dr.

Annual Bluegrass (Poa annua L.) Control In Non-Overseeded Bermudagrass Turf Report

Fruit Set, Growth and Development

Fungicides for phoma control in winter oilseed rape

Midwest Cantaloupe Variety Trial in Southwest Indiana 2015

Mango Flower Induction in the Brazilian Northeast Semi-Arid with Gibberellin Synthesis Inhibitors

Response of Three Brassica Species to High Temperature Stress During Reproductive Growth

J. Environ. Sci. & Natural Resources, 9(1): , 2016 ISSN

To study the effects of four different levels of fertilizer NPK nutrients, applied at a ratio of N:P 2

Effect of Planting Date and Maturity Group on Soybean Yield in the Texas High Plains in 2000

Marvin Butler, Rhonda Simmons, and Ralph Berry. Abstract. Introduction

BEEF Effect of processing conditions on nutrient disappearance of cold-pressed and hexane-extracted camelina and carinata meals in vitro 1

Takao IcHli and Kenichi HAMADA Faculty of Agriculture, Kobe University, Kobe and Agricultural Experiment Station of Hyogo Prefecture, Sumoto

EFFECT OF FRUCOL APPLICATION ON SHELF LIVE OF IDARED APPLES

Final Report. TITLE: Developing Methods for Use of Own-rooted Vitis vinifera Vines in Michigan Vineyards

THE EFFECT OF DIFFERENT APPLICATIONS ON FRUIT YIELD CHARACTERISTICS OF STRAWBERRIES CULTIVATED UNDER VAN ECOLOGICAL CONDITION ABSTRACT

AMINOFIT.Xtra, SOME TEST RESULTS

NEW ZEALAND AVOCADO FRUIT QUALITY: THE IMPACT OF STORAGE TEMPERATURE AND MATURITY

FRUIT GROWTH IN THE ORIENTAL PERSIMMON

Use of a potassium permanganate ethylene absorbent to maintain quality in Golden Delicious apple during ULO cold storage

Treating vines after hail: Trial results. Bob Emmett, Research Plant Pathologist

INCREASING PICK TO PACK TIMES INCREASES RIPE ROTS IN 'HASS' AVOCADOS.

Effect of Time of Harvest on Fruit Size, Yield and Trunk Starch Concentrations of 'Fuerte' Avocados

GALA SPLITTING WASHINGTON TREE FRUIT POSTHARVEST CONFERENCE. March 13 th & 14 th, 2001, Wenatchee, WA PROCEEDINGS, Gala Splitting page 1 of 6

and the use of kelpak in their production

Cleome Señorita Rosalita & Appleblossom. Optimizing PGR Rates

Effect of Different Levels of Grape Pomace on Performance Broiler Chicks

GROWTH REGULATORS APPLICATION AFFECTS VEGETATIVE AND REPRODUCTIVE BEHAVIOUR OF BLOOD RED SWEET ORANGE

ALBINISM AND ABNORMAL DEVELOPMENT OF AVOCADO SEEDLINGS 1

Use of Plant Growth Regulators for Improving Lemon Fruit Size

Summary 2003: Problem and its significance:

2010 Winter Canola Variety Trial

Growth and yield of tomato as influenced by potassium and gibberellic acid

BERRY SIZE OF THOMPSON SEEDLESS AS INFLUENCED BY THE APPLICATION OF GIBBERELLIC ACID AND CANE GIRDLING

PERFORMANCE OF HYBRID AND SYNTHETIC VARIETIES OF SUNFLOWER GROWN UNDER DIFFERENT LEVELS OF INPUT

Tea Research Foundation Central Africa

Research - Strawberry Nutrition

Combining Ability Analysis for Yield and Morphological Traits in Crosses Among Elite Coffee (Coffea arabica L.) Lines

Keywords: Prunus domestica, pollination, pollen germination, pollen tube growth, fruit set, temperature

NIMITZ NEMATICIDE FIELD TRIALS

Calculating Chill Hours Based Upon the Dynamic Model for Use in Determining When to Apply Restbreaking Agents in California Sweet Cherry Production

Prohexadione-Calcium Enhances the Cropping Potential and Yield of Strawberry

2014 Agrium AT Fertilizer Trial Glen R. Obear and Bill Kreuser, Ph.D University of Nebraska-Lincoln. Objectives

Trial Report: Cantaloupe Variety Evaluation 2015

Plant Population Effects on the Performance of Natto Soybean Varieties 2008 Hans Kandel, Greg Endres, Blaine Schatz, Burton Johnson, and DK Lee

EFFECT OF TOMATO GENETIC VARIATION ON LYE PEELING EFFICACY TOMATO SOLUTIONS JIM AND ADAM DICK SUMMARY

Influence of GA 3 Sizing Sprays on Ruby Seedless

EFFECT OF DIFFERENT PRUNING TIMES ON THE YIELD OF TEA (Camellia sinensis L.) UNDER THE CLIMATIC CONDITIONS OF MANSEHRA-PAKISTAN

Silage Corn Variety Trial in Central Arizona

Transcription:

Vegetative Growth Responses of Citrus Nursery Trees to Various Growth Retardants Smit le Roux 1 and Graham H. Barry 2,3,4 ADDITIONAL INDEX WORDS. gibberellin-biosynthesis inhibitors, paclobutrazol, prohexadione-calcium, rind color, uniconazole SUMMARY. As part of a larger study to improve rind color of citrus (Citrus spp.) fruit, this initial study was conducted to determine the concentration of various gibberellin-biosynthesis inhibitors required to elicit a biological response in citrus trees, as measured by vegetative growth. Paclobutrazol and GA 3 were included as control treatments at concentrations known to elicit growth-retarding or growthpromoting effects, respectively. Repeated ( 4) foliar applications of GA 3 (at 64 ppm) increased growth of Eureka lemon (Citrus limon) shoots by 63%, with no significant effect on rootstock and scion diameters. Repeated foliar applications of prohexadione-calcium (ProCa) at various concentrations (100, 200, 400, or 800 ppm) as well as uniconazole (at 500 or 1000 ppm) and paclobutrazol (at 0.25%) had no effect on rootstock or scion diameters 8 months after the first application. The high concentrations of ProCa (800 ppm) and uniconazole (1000 ppm), and the paclobutrazol treatment (0.25%) reduced shoot length compared with the control. Uniconazole at 1000 ppm resulted in the most growth retardation, which resulted in 34% shorter shoot length than the control. Although the number of nodes on the longest shoot did not differ from the untreated control, internode length differed significantly among treatments. ProCa at 400 and 800 ppm, uniconazole at 1000 ppm, and paclobutrazol at 0.25% significantly reduced internode length relative to the control by 31%, 56%, 50%, and 28%, respectively. Vegetative growth of Eureka lemon nursery trees was retarded following the repeated ( 4) foliar application of gibberellin-biosynthesis inhibitors. ProCa at 400 to 800 ppm and uniconazole at 1000 ppm were identified as prospective treatments for further field studies to test their effects on rind color enhancement of citrus fruit. As part of a larger study to improve rind color of citrus fruit, this initial study was conducted to determine the concentration of various gibberellin-biosynthesis inhibitors required to elicit a biological response in citrus trees as measured by vegetative growth. Goldschmidt (1988) hypothesized that factors contributing to invigorating growing conditions are antagonistic to optimal rind color development. The vegetative growth of citrus trees is stimulated by various exogenous factors, viz. high temperature, This study was made possible by partial funding from Citrus Growers Association of Southern Africa, Citrus Research International, the National Research Foundation (grant no. NRF 2046844), and Du Roi Nursery. We thank Willem van Kerwel for technical assistance and Nucellar Nursery for providing the trees in this study. 1 Department of Horticultural Science, Stellenbosch University, P. Bag X01, Matieland 7602, Stellenbosch, South Africa 2 Citrus Research International, Department of Horticultural Science, Stellenbosch University, P. Bag X01, Matieland 7602, Stellenbosch, South Africa 3 Current address: GCM Variedades Vegetales AIE, Valencia, Spain. 4 Corresponding author. E-mail: ghbarry@gmail.com. high light intensity, nitrogen, and water, as well as endogenous hormones, viz. gibberellins and cytokinins. Young leaves and fruit are major sites of gibberellin biosynthesis (Salisbury and Ross, 1992; Spiegel-Roy and Goldschmidt, 1996). High endogenous gibberellin concentrations enhance stem elongation (Salisbury and Ross, 1992) and delay rind color development of citrus fruit (Garcia- Luis et al., 1985). Growth retardants, some of which are gibberellin-biosynthesis inhibitors, reduce vegetative growth in plants by disrupting gibberellin biosynthesis (Smeirat and Qrunfleh, 1989). Aron et al. (1985) demonstrated that when paclobutrazol (CultarÒ; Syngenta Crop Protection, Basel, Switzerland) was applied at 1 Units To convert U.S. to SI, multiply by U.S. unit SI unit gl 1 on Minneola tangelo (Citrus reticulata Citrus paradisi) trees just before the onset of the summer flush, it reduced shoot length, internode length, and the number of shoots developed by 41%, 76%, and 44%, respectively. Similarly, Delgado et al. (1986) showed that paclobutrazol reduced internode length, and hence shoot length, of Valencia sweet orange (Citrus sinensis) in Cuba. Uniconazole (SunnyÒ; Valent BioSciences, Chicago) reduced shoot length, number of lateral shoots per terminal, number of nodes per terminal, and internode length in Wichita pecan (Carya illinoinensis) (Graham and Storey, 2000) and Cleopatra mandarin (C. reticulata) (Wheaton, 1989) trees. ProCa (RegalisÒ and ApogeeÒ; BASF, Ludwigshafen, Germany) is used on apple (Malus domestica) and pear (Pyrus communis) fruit trees to reduce and control vegetative growth (Miller, 2002). Costa et al. (2001) reported that applications of 100 ppm ProCa significantly reduced shoot growth and increased fruit size in pears. ProCa acts primarily as a gibberellinbiosynthesis inhibitor, especially 3b-hydroxylation of GA 20 to GA 1 (Nakayama et al., 1992; Rademacher, 2001). Stover et al. (2004) found that two 500 ppm ProCa applications reduced the vegetative growth of six citrus genotypes tested by 40%. In contrast to the affects of gibberellin-biosynthesis inhibitors on vegetative growth, their effects on rind color enhancement of citrus fruit are not well known. Monselise and coworkers (1976) reported that paclobutrazol contributed to the acceleration of chlorophyll degradation of sweet orange. Gilfillan and Lowe (1985) demonstrated that paclobutrazol increased Satsuma mandarin (Citrus unshiu) rind color by 1 to 2 color rating units. This result was achieved when paclobutrazol was applied after physiological fruit drop (in November) at 1 gl 1, as well as in summer (January and February), To convert SI to U.S., multiply by 0.3048 ft m 3.2808 2.54 inch(es) cm 0.3937 25.4 inch(es) mm 0.0394 0.001 ppm gl -1 1000 1 ppm mgl -1 1 February 2010 20(1) 197

RESEARCH REPORTS and suggests that paclobutrazol suppressed the early summer growth flush (November December), which might be more important for rind color development than the late summer flush (January February). Monselise (1986) mentioned that paclobutrazol caused a more rapid change of rind color in Topaz tangor (C. reticulata C. sinensis), an Israeli selection of Ortanique tangor. Preliminary results by Barry and Van Wyk (2004) showed that when ProCa was applied 2 weeks before anticipated harvest at 100 ppm to Navelina Navel sweet orange, rind color was improved as a result of chlorophyll degradation and carotenoid biosynthesis. No other reports on the possible affect of gibberellinbiosynthesis inhibitors on rind color enhancement of citrus fruit were found. The principal objective of this study was to determine the concentration of various gibberellin-biosynthesis inhibitors required to retard shoot growth in citrus nursery trees. This information could then be used in field studies to test the effects of gibberellinbiosynthesis inhibitors on rind color enhancement of citrus fruit. Materials and methods PLANT MATERIAL AND SITE. During the 06 summer growing season, 108 potted nursery trees of Eureka lemon budded on X639 rootstock [ Cleopatra mandarin trifoliate orange (Poncirus trifoliata)] of similar size and with at least three strong primary branches were selected at Nucellar Nursery, Simondium, Western Cape province, South Africa (lat. 33 50#S, long. 18 58#E, 160 m altitude). These trees were 21 months old at the start of the experiment. TREATMENTS APPLIED. Potted nursery trees were randomly allocated to treatments that were applied as foliar sprays, viz. untreated control; GA 3 (ProGibbÒ, Valent BioSciences) at 64 ppm a.i.; ProCa at 100, 200, 400, or 800 ppm; uniconazole at 500 or 100 ppm; and paclobutrazol at 0.25%. Paclobutrazol and GA 3 were included as control treatments at concentrations known to elicit growthretarding and growth-promoting effects, respectively. Kaolin particle film (SurroundÒ WP Crop Protectant; Engelhard, Iselin, NJ) at 2 ppm a.i. was applied together with all treatments to easily distinguish new growth flushes throughout the assessment period. All treatments were applied four times on 15 Nov., 27 Dec., 16 Feb. 2006, and 31 Mar. 2006, and these application dates were planned to coincide with various growth flushes during the summer growing season. DATA COLLECTION. Rootstock and scion diameters were measured 2 cm below and 3 cm above the bud union, at the start of the experiment (15 Nov. ), 6 weeks thereafter (27 Dec. ), and at the end of the experiment (20 July 2006). Three shoots per tree were selected, marked, and their length was measured at the start of the experiment. Thereafter, only the length of the new growth was measured and internodes were counted at each assessment date. The purpose of this study was not to quantify the optimal concentration of growth retardant required to achieve maximum growth retardation, but rather to determine at what concentration various gibberellin-biosynthesis inhibitors caused a vegetative growth response in citrus nursery trees. Therefore, and because all shoots did not flush and grow out, data analysis was done on the longest shoot to quantify the treatment effects on growth retardation. STATISTICAL DESIGN AND ANAL- YSIS. Experimental layout was a completely randomized block design consisting of 12 single-tree replicates. Blocking was used to reduce the possible effect of experimental error due to within-site variation as a result of lighting and microclimate. Analysis of variance was conducted using the general linear model (GLM) procedure of SAS (version 9.1; SAS Institute, Cary, NC) and least significant difference values were used to separate treatment means. Due to initial differences in stem diameter among trees, analysis of covariance was conducted with initial stem diameter and shoot length as covariates. Results and discussion Rootstock diameter did not differ among treatments throughout the experiment (Table 1). Significant differences in scion diameter were measured at the onset of the trial and 6 weeks thereafter, but there were no significant differences among treatments at the final measurement (Table 1). When the initial rootstock and scion diameters were fixed by covariance analysis, there were no significant differences among treatments on the final rootstock and scion diameters. In this short-term study Table 1. Mean rootstock and scion diameters of citrus nursery trees of Eureka lemon budded onto X639 rootstock after treatment with GA 3, prohexadione-calcium (ProCa), uniconazole, and paclobutrazol to determine the concentration of various gibberellin-biosynthesis inhibitors required to retard shoot growth in citrus nursery trees. Measurements were made at the start of the experiment (15 Nov. ), 6 weeks thereafter (27 Dec. ), and at the end of the experiment (20 July 2006). Treatment (a.i.) z Rootstock diam (mm) z 15 Nov. 27 Dec. 20 July 2006 15 Nov. Scion diam (mm) 27 Dec. 20 July 2006 Control 14.3 NS y 13.9 NS 14.5 NS 11.1 bc 11.0 bc 11.8 NS GA 3 64 ppm 14.6 14.2 15.3 12.3 a 11.5 abc 12.1 ProCa 100 ppm 14.1 14.2 14.4 10.9 c 11.2 bc 11.2 ProCa 200 ppm 14.3 14.2 14.5 11.5 abc 11.0 bc 11.8 ProCa 400 ppm 15.4 15.3 15.7 11.8 abc 11.3 bc 11.6 ProCa 800 ppm 13.4 13.5 14.2 11.2 bc 10.7 c 11.3 Uniconazole 500 ppm 15.0 15.3 15.6 12.1 ab 11.9 ab 12.2 Uniconazole 1000 ppm 14.8 14.6 15.1 11.4 abc 11.0 bc 11.4 Paclobutrazol 0.25% 14.3 14.8 15.3 12.2 a 12.4 a 12.2 P value 0.2780 0.3159 0.3179 0.0430 0.0482 0.2207 LSD x 1.45 1.60 1.41 1.00 1.02 0.91 z 1ppm=1mgL 1, 1 mm = 0.0394 inch. y Means within columns followed by different letters are significantly different at P 0.05; NS = nonsignificant. x Least significant difference. 198 February 2010 20(1)

(i.e., 8 months), there was too little time for a treatment response in rootstock and scion diameters, although differences would be expected with a longer-term study (Smeirat and Qrunfleh, 1989). Shoot length of the longest shoot was 63% longer for the GA 3 treatment than for the control (Fig. 1), which confirms previous reports that GA 3 applied at 64 ppm stimulates citrus shoot growth (Mudzunga, 2000). This response is not unexpected given the role of gibberellins in enhancing stem elongation (Salisbury and Ross, 1992). In contrast, shoot length of the trees that received the high concentrations of ProCa (800 ppm) and uniconazole (1000 ppm), and the paclobutrazol treatment (0.25%), were shorter than that of the control (Fig. 1). The 1000 ppm uniconazole treatment had 34% shorter shoot length than the control. Shoot length of the other treatments did not differ from that of the control (Fig. 1). Although the number of nodes on the longest shoot did not differ in any of the treatments from the untreated control (Fig. 2), internode Fig. 1. Shoot length of the longest shoot of Eureka lemon nursery trees at the end of the experiment on 20 July 2006 after treatment with GA 3, prohexadione-calcium (ProCa), uniconazole (Unicon), and paclobutrazol (Pac) to determine the followed by a different letter are significantly different at P 0.10 (least significant difference = 76.7); 1 ppm = 1mgL 21, 1 mm = 0.0394 inch. Fig. 2. Number of nodes on the longest shoot of Eureka lemon nursery trees the end of the experiment on 20 July 2006 after treatment with GA 3, prohexadione-calcium (ProCa), uniconazole (Unicon), and paclobutrazol (Pac) to determine the followed by a different letter are significantly different at P 0.05 (least significant difference = 6.96); 1 ppm = 1mgL 21. February 2010 20(1) 199

RESEARCH REPORTS Fig. 3. Internode length of the longest shoot of Eureka lemon nursery trees the end of the experiment on 20 July 2006 after treatment with GA 3, prohexadione-calcium (ProCa), uniconazole (Unicon), and paclobutrazol (Pac) to determine the followed by a different letter are significantly different at P 0.05 (least significant difference = 3.87); 1 ppm = 1mgL 21,1mm= 0.0394 inch. Fig. 4. Photographs of Eureka lemon shoots that illustrate the effect of growth retardants on vegetative growth. (A) untreated control (internode length = 14.7 mm); (B) 400 ppm prohexadione-calcium (ProCa) (internode length = 10.1 mm). Note the shortening of internode length by >30% in the Pro-Ca treatment compared with the untreated control treatment; 1 mm = 0.0394 inch, 1 ppm = 1mgL 21. (To view this figure in color, please view the paper online through the ASHS website: ashs.org.) length differed significantly among treatments (Fig. 3). ProCa at 400 and 800 ppm, uniconazole at 1000 ppm, and paclobutrazol at 0.25% reduced internode length relative to the control by 31%, 56%, 50%, and 28%, respectively (Figs. 3 and 4). In this study, the cause of shorter shoot length was not due to fewer nodes, but rather due to shorter internode length (Fig. 4). These results compare favorably with those in previous reports on the effects of gibberellin-biosynthesis inhibitors on citrus growth. For example, vegetative growth retardation following paclobutrazol treatment was achieved with Mexican lime (Citrus aurantifolia) (Medina-Urrutia and Buenrostro-Nava, 1995), lemon (Harty and van Staden, 1988; Smeirat and Qrunfleh, 1989), Valencia sweet orange (Delgado et al., 1986), and Minneola tangelo (Aron et al., 1985; Greenberg et al., 1993); uniconazole reduced shoot length of sour orange (Citrus aurantium) (Swietlik, 1986) and Cleopatra mandarin seedlings (Wheaton, 1989); and Stover et al., (2004) showed that two 500 ppm ProCa applications reduced the vegetative growth of six citrus genotypes tested. In conclusion, vegetative growth of Eureka lemon nursery trees was retarded following the repeated foliar application of gibberellin-biosynthesis inhibitors. Because it is unlikely that paclobutrazol would be registered on citrus due to its persistence in the environment and the plant (Goulston and Shearing, 1985), ProCa at 400 to 800 ppm and uniconazoleat 1000 ppm are prospective treatments for further field studies to test their effects on rind color enhancement of citrus fruit. Literature cited Aron, Y., S.P. Monselise, R. Goren, and J. Costo. 1985. Chemical control of vegetative growth in citrus trees by paclobutrazol. HortScience 20:96 98. Barry, G.H. and A.A. Van Wyk. 2004. Novel approaches to rind colour enhancement of citrus. Proc. Intl. Soc. Citriculture 3:1076 1079. Costa, G., C. Andreotti, F. Bucchi, E. Sabatini, C. Bazzi, and S. Malaguti. 2001. Prohexadione-Ca (ApogeeÒ): Growth regulation and reduced fire blight incidence in pear. HortScience 36:931 933. Delgado, R., R. Casamayor, J.L. Rodriguez, P. Cruz, and R. Fajardo. 1986. Paclobutrazol effects on oranges under tropical conditions. Acta Hort. 179:537 544. Garcia-Luis, A., M. Agusti, V. Almela, E. Romero, and J.L. Guardiola. 1985. Effects of gibberellic acid on ripening and peel puffing in Satsuma mandarin. Scientia Hort. 27:75 86. Gilfillan, I.M. and S.J. Lowe. 1985. Fruit colour improvement in Satsumas with paclobutrazol and ethephon: Preliminary studies. Citrus J. 5:4 8. Goldschmidt, E.E. 1988. Regulatory aspects of chloro-chromoplast interconvensions in senescing Citrus fruit peel. Israeli J. Bot. 47:123 130. Goulston, G.H. and S.J. Shearing. 1985. Review of the effects of paclobutrazol on ornamental pot plants. Acta Hort. 167:339 348. 200 February 2010 20(1)

Graham, C.J. and J.B. Storey. 2000. Method of application of uniconazole affects vegetative growth of pecan. Hort- Science 35:1199 1201. Greenberg, J., E.E. Goldschmidt, and R. Goren. 1993. Potential and limitations of the use of paclobutrazol in citrus orchards in Israel. Acta Hort. 329:58 61. Harty, A.R. and J. van Staden. 1988. Paclobutrazol and temperature effects on lemon. Proc. Sixth Intl. Citrus Congr. p. 343 353. Medina-Urrutia, V. and M. Buenrostro- Nava. 1995. Effect of paclobutrazol on vegetative growth, flowering fruit size and yield in Mexican lime (Citrus aurantifolia) trees. Proc. Florida State Hort. Soc. 108:361 364. Miller, S.S. 2002. Prohexadione-calcium controls vegetative shoot growth in apple. J. Tree Fruit Production 3:11 28. Monselise, S.P. 1986. Growth retardation of shoot and peel growth in citrus by paclobutrazol. Acta Hort. 179:529 535. Monselise, S.P., M. Weiser, N. Shafir, R. Goren, and E.E. Goldschmidt. 1976. Creasing of orange peel: Physiology and control. J. Hort. Sci. 51:341 351. Mudzunga, M.J. 2000. Enhancement of vegetative growth in young citrus plantings. Univ. Stellenbosch, Stellenbosch, South Africa, M.S. Agr. thesis. Nakayama, I., M. Kobayashi, Y. Kamiya, H. Abe, and A. Sakurai. 1992. Effects of plant-growth regulator, prohexadionecalcium (BX-112), on the endogenous levels of gibberellins in rice. Plant Cell Physiol. 33:59 62. Rademacher, W. 2001. BAS 125 10 W ( Regalis ): General information and biological profile. BASF Global PGR Research and Development, Limburgerhof, Germany. Salisbury, F.B. and C.W. Ross. 1992. Plant physiology. Wadsworth, Belmont, CA. Smeirat, N. and M. Qrunfleh. 1989. Effect of paclobutrazol on vegetative and reproductive growth of Lisbon lemon. Acta Hort. 239:261 264. Spiegel-Roy, P. and E.E. Goldschmidt. 1996. Fruit development and maturation, p. 92 107. In: P. Spiegel-Roy and E.E. Goldschmidt (eds.). Biology of citrus. Cambridge University Press, Cambridge, UK. Stover, E.W., S.M. Ciliento, and M.E. Myers. 2004. Response of six citrus genotypes to prohexadione-ca. Plant Growth Regulat. Soc. Amer. 32:86. Swietlik, D. 1986. Effect of gibberellin inhibitors on growth and mineral nutrition of sour orange seedlings. Scientia Hort. 29:325 333. Wheaton, T.A. 1989. Triazole bioregulators reduce internode length and increase branch angle of citrus. Acta Hort. 239: 277 280. February 2010 20(1) 201