Novel Closed System Extraction of Essential Oil: Impact on Yield and Physical Characterization

Similar documents
Quantitative Measurement of Sesquiterpenes in Various Ginger Samples by GC-MS/MS

Journal of Chemical and Pharmaceutical Research, 2017, 9(9): Research Article

Analytical Method for Coumaphos (Targeted to agricultural, animal and fishery products)

Decolorisation of Cashew Leaves Extract by Activated Carbon in Tea Bag System for Using in Cosmetics

Somchai Rice 1, Jacek A. Koziel 1, Anne Fennell 2 1

CHAPTER 8. Sample Laboratory Experiments

EXTRACTION. Extraction is a very common laboratory procedure used when isolating or purifying a product.

CRYOGENIC GRINDING OF BLACK PEPPER IS A NOVEL APPROACH WHEREAS CONVENTIONAL GRINDING NEEDS IMPROVEMENT

Experiment 6 Thin-Layer Chromatography (TLC)

Profiling of Aroma Components in Wine Using a Novel Hybrid GC/MS/MS System

One class classification based authentication of peanut oils by fatty

Tyler Trent, SVOC Application Specialist; Teledyne Tekmar P a g e 1

Study on grinding of black pepper and effect of low feed temperature on product quality

Synthesis 0732: Isolating Caffeine from Tea

Acta Chimica and Pharmaceutica Indica

Table 1: Experimental conditions for the instrument acquisition method

Comparison of Supercritical Fluid Extraction with Steam Distillation for the Extraction of Bay Oil from Bay (Pimenta Racemosa) Leaves

Distillation Purification of Liquids

Structural optimal design of grape rain shed

Extraction of Essential Oil from Citrus junos Peel using Supercritical Carbon Dioxide

Solid Phase Micro Extraction of Flavor Compounds in Beer

Somchai Rice 1, Jacek A. Koziel 1, Jennie Savits 2,3, Murlidhar Dharmadhikari 2,3 1 Agricultural and Biosystems Engineering, Iowa State University

Determination of Alcohol Content of Wine by Distillation followed by Density Determination by Hydrometry

Universidad, Gobierno de Aragón, Apdo. 727, Zaragoza, Spain e

EXTRACTION PROCEDURE

EXTRACTION OF PINEAPPLE LEAF FIBRE: JOSAPINE AND MORIS

PECTINASE Product Code: P129

Chapter 1. Spices Sources, Processing, and Chemistry

Separation of a Mixture

FAT, TOTAL (Hydrolysis)

EXTRACTION OF SEDIMENTS FOR AROMATIC AND CHLORINATED HYDROCARBONS

RESOLUTION OIV-OENO ANALYSIS OF VOLATILE COMPOUNDS IN WINES BY GAS CHROMATOGRAPHY

Extraction of Acrylamide from Coffee Using ISOLUTE. SLE+ Prior to LC-MS/MS Analysis

GAS-CHROMATOGRAPHIC ANALYSIS OF SOME VOLATILE CONGENERS IN DIFFERENT TYPES OF STRONG ALCOHOLIC FRUIT SPIRITS

Organic Chemistry 211 Laboratory Gas Chromatography

Application Note: Analysis of Melamine in Milk (updated: 04/17/09) Product: DPX-CX (1 ml or 5 ml) Page 1 of 5 INTRODUCTION

! " # # $% 004/2009. SpeedExtractor E-916

TSKgel TECHNICAL INFORMATION SHEET No. 131

Determination of Caffeine in Coffee Products According to DIN 20481

GC/MS BATCH NUMBER: W10104

Determination of the concentration of caffeine, theobromine, and gallic acid in commercial tea samples

Fig.1 Diagram of vacuum cooling system [7-8]

Comparative determination of glycosides in senna by using different methods of extraction (Soxhlet, maceration and ultrasonic bath)

Separating the Components of a Mixture

AN ENOLOGY EXTENSION SERVICE QUARTERLY PUBLICATION

STUDY AND IMPROVEMENT FOR SLICE SMOOTHNESS IN SLICING MACHINE OF LOTUS ROOT

Mix the Old with the New

STANDARD FOR BLACK, WHITE AND GREEN PEPPERS CXS Adopted in 2017.

Analytical Report. Volatile Organic Compounds Profile by GC-MS in Cupcake Batter Flavor Concentrate

Comprehensive analysis of coffee bean extracts by GC GC TOF MS

Attention is drawn to the following places, which may be of interest for search:

In the preparation of this Tanzania Standard assistance was derived from:

Effect of % solution concentration pretreatment on weight loss of Thompson seedless grapes Priyanka Desai, Vijay Doijad, Nishikant Shinde

TEA & COFFEE. Your Finest Source of Tea and Coffee

Analytical Report. Volatile Organic Compounds Profile by GC-MS in Clove E-liquid Flavor Concentrate. PO Box 2624 Woodinville, WA 98072

D.C. Sikdar, 2 Vikas Gunaki, 3 Rakesh Rao 1,2,3

THE EFFECTS OF FIXED-BED DRYING ON THE YIELD AND COMPOSITION OF ESSENTIAL OIL FROM LONG PEPPER (Piper hispidinervium C. DC) LEAVES

Natural Oil Preparation and Processing

Rapid Analysis of Soft Drinks Using the ACQUITY UPLC H-Class System with the Waters Beverage Analysis Kit

Analysis of Volatile Compounds of Jasminum nitidum [Acc.JN.1] Flowers

CITRUS & ALLIED GLOSSARY OF INDUSTRY TERMS

DRYING TECHNOLOGY EVAPORATION TECHNOLOGY EXTRACTION TECHNOLOGY

CONCENTRATION OF AROMA AND VITAMIN RICH FRUIT JUICES BY COMPLEX MEMBRANE TECHNOLOGY

Fast Analysis of Smoke Taint Compounds in Wine with an Agilent J&W DB-HeavyWax GC Column

Post-Harvest-Multiple Choice Questions

CHEM Experiment 4 Introduction to Separation Techniques I. Objectives

Analysis of tea powder for adulterant

Evaluation of Quality Characteristics and Microbial Contamination of Saffron Samples Dried by Microwave

RISK MANAGEMENT OF BEER FERMENTATION DIACETYL CONTROL

Coffee Filter Chromatography

An Economic And Simple Purification Procedure For The Large-Scale Production Of Ovotransferrin From Egg White

Maceration Percolation And Infusion Techniques Of

Sequential Separation of Lysozyme, Ovomucin, Ovotransferrin and Ovalbumin from Egg White

Emerging Applications

Solid Phase Micro Extraction of Flavor Compounds in Beer

ADVANCED BEER AROMA ANALYSIS. Erich Leitner TU Graz, Institute of Analytical Chemistry and Food Chemistry, Graz, Austria

Identification of Adulteration or origins of whisky and alcohol with the Electronic Nose

Analysis of Volatile Compounds from the Concrete of Jasminum multiflorum Flowers

PINEAPPLE LEAF FIBRE EXTRACTIONS: COMPARISON BETWEEN PALF M1 AND HAND SCRAPPING

FLAVOUR FIRST home4apk.com FLAVOUR FIRST FLAVOUR FIRST PDF HOME PAGE - FLAVOURFIRST FLAVORS FIRST DOWNLOAD EBOOK PDF, EPUB, TUEBL, MOBI 1 / 5

Determination of Melamine Residue in Milk Powder and Egg Using Agilent SampliQ Polymer SCX Solid Phase Extraction and the Agilent 1200 Series HPLC/UV

The Determination of Pesticides in Wine

Dept.of Chemical Engineering, Dayananda Sagar College of Engineering, Bangalore , India 1. 2

Relationship between Fruit Color (ripening) and Shelf Life of Cranberries: Physiological and Anatomical Explanation

Extraction by subcritical water of polyphenols from Dunkelfelder and Cabernet Franc grape pomace coupled with membrane filtration

STUDIES ON THE CHROMATIC CHARACTERISTICS OF RED WINES AND COLOR EVOLUTION DURING MATURATION

Marolo Grappa presentation

Strategies for reducing alcohol concentration in wine

LAB: One Tube Reaction Part 1

PERFORMANCE TESTING. The Decaf Company, LLC 46 Red Birch Court Danville, California 94506

Bioethanol Production from Pineapple Peel Juice using Saccharomyces Cerevisiae

Consumer Education VCO Processing Methods (Dry & Wet Methods)

CHARACTERISTlCS AND QUALITY OF THE FREEZE-DRIED INDONESIAN TRADITIONAL HERB MEDICINE

THE BREWING VALUE OF HOPS HOP & BREW SCHOOL A UG 29 S EPT 1, 2017, Y AKIMA

Thermal Hydraulic Analysis of 49-2 Swimming Pool Reactor with a. Passive Siphon Breaker

Analysis of Resveratrol in Wine by HPLC

Japan, Chocolate, Vegetable fats, Chocolate standards

5. Supporting documents to be provided by the applicant IMPORTANT DISCLAIMER

VOLANTE GROUP. A fresh way to look at the past by building on the future.

TotallyNaturalSolutions

Transcription:

2014 4th International Conference on Biotechnology and Environment Management IPCBEE vol.75 (2014) (2014) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2014. V75. 7 Novel Closed System Extraction of Essential Oil: Impact on Yield and Physical Characterization Muhammad Syarhabil Ahmad, Dalila Nasshorudin and Awang Soh Mamat Universiti Malaysia Perlis/School of Bioprocess Engineering, Perlis, Malaysia Universiti Malaysia Perlis/School of Bioprocess Engineering, Perlis, Malaysia Abstract. We have developed an extraction technique derived from the purification technique of bulb to bulb distillation, a novel and green approach for the extraction of essential oil from fresh plant materials. This solvent and water free approach is based on a simple principle involving the application of vacuum system in a closed system under a reduced pressure and temperature to extract essential oils. The extraction has been compared with a conventional technique, hydro distillation. Essential oil isolated by solvent free extraction were quantitatively (yield) and qualitatively (aromatic profile) better to those obtained by hydro distillation. The present apparatus permits fast and efficient extraction, avoids water and solvent consumption, less contamination, lesser processes and allows substantial energy savings. The results showed that by using this solvent free extraction technique, the essential oil produced is lighter in color, higher yield, contains cleaner and distinguishable peaks in GC representing better purity and produced a stronger aroma compared to the essential oil produced from hydro distillation. Keywords: solvent free, essential oil extraction 1. Introduction Essential oils are concentrated complex mixtures of many natural components that contain volatile aromatic compounds extracts from fragrant plants. It can be extracted from the seeds, flowers, leaves, wood bark, stems, fruits, rhizomes and roots, from a wide variety of plant shrub and tree species. Essential oils are an important source of raw material to the pharmaceutical, cosmetic and food industries. The constituent of essential oil are synthesized in plant by the secondary metabolites and stored in grandular trichomes, oil cells or ducts in plant tissue [1]. Essential oil compositions are commonly mixture of terpenes, mainly monoterpenes and sesquiterpenes, aliphatic compound and aromatic compound [2]. Currently, the conventional methods for extraction of essential oil that are widely used by the industry are steam distillation, hydro-distillation and solvent extraction. These methods have some weaknesses which is highly affecting the yield and quality of the essential oil. For steam distillation and hydro-distillation, the high temperature used can cause chemical modification of the essential oil component especially to the heat sensitive volatile compound [3]. Furthermore, the use of solvent extraction is not an effective way due to the present of solvent residue in the product and also resulting in the loss of the highly volatile component of the essential oil [4]. The disadvantages related to these techniques have led to the searching for new alternative extraction processes. Supercritical fluid extraction is one of the latest techniques used for extraction of essential oil. In contrast to the conventional method, the extraction by supercritical fluid extraction is better because the essential oil produce is high in quality [4]. However, referring to [5] this technique is not cost effective due to the use of super critical fluid for extraction and other compound is also extracted such as resins and the vegetable waxes. Corresponding author. Tel.: +6019 4510111; fax: +604 9798755. E-mail address: syarhabil@unimap.edu.my. 42

Considering the fact that the pure form of essential oil with best quality is hard to get, this new method of extraction is invented and tested to discover its potential. Our extraction method works on the principle that boiling point of a substance is lowered when the pressure is reduced. This technique can be applied to any plant that has volatile compounds. The extraction process is done in a vacuum closed system. Vacuum condition is needed to distill and release the oil from the plants oil cells or duct under reduced pressure. The pressure in the system is reduce, making it possible to boil the liquid at lower temperature. The essential oil produced from this technique will be pure as there are no solvent used for extraction. This technique was developed because most essential oils cannot be distilled at atmospheric pressure because the boiling point is too high and distilling at normal boiling point will cause decomposition of compound. So by using this technique, extraction of essential oil can be done at lower temperature to preserve the phytochemical constituents. This solvent free extraction technique can produce high quality essential oil with higher yield due to the closed system. 2. Materials and Methods 2.1. Closed system extraction and solvent free extraction technique Fresh leaves of aromatic plants were grinded and to break them into smaller pieces and increasing the area of contact. Then, the grind leaves were put in a flask which was connected to another flask as a receiving flask. Firstly, the raw material was cooled down to a very low temperature to prevent decomposition and to avoid premature oil evaporation. Vacuum and nitrogen gas was applied on and off to remove air and replacing it with nitrogen. Then vacuum was applied lastly before extraction begun. Then the receiving flask was cooled to a very low temperature where the essential oil would be condensed. Heat was placed below the raw material flask at certain temperature according to the targeted compound range temperature and pressure. Vapors containing water and essential oil were collected at the receiving flask at the end of the extraction process. Water and oil was separated and anhydrous sodium sulfate was used to dry the excess water. 2.2. Gas chromatography (GC) analysis The essential oil extracted was analyzed by using Gas Chromatography to study the composition of the oil. The gas phase chromatography analysis was carried out using Gas Chromatography equipped with a flame ionization detector and BPX70 column (25 m x 0.25 mm, df: 0.25 µm) with a spilt flow rate of 60 ml /min, nitrogen gas as carrier gas and temperature programming 5 min at 50 ºC and 6ºC /min up to 200ºC, injector temperature was 220ºC and detector temperature was 235 ºC. 3. Results and Discussion 3.1. Yield analysis Table 1:Yield of the closed system extraction, solvent free extraction of various leaves Weight of Weight of leaves (g) essential oil (g) 50 0.05 Citronella 50 0.45 50 3.31 Orange peel 50 2.88 Table 2:Yield from steam distillation of various leaves Weight of Weight of leaves (g) essential oil (g) 50 0.025 Citronella 50 0.255 50 1.720 Orange peel 50 1.050 43

3.2. Physical characterization Table 3: Colour comparison of the essential oil extracted from solvent free extraction and steam distillation of various leaves Solvent free Steam extraction Distillation Yellowish Greenish Citronella Pale yellow Pale green Colorless Light yellow Orange peel Colorless Light Yellow Table 4: Odor comparison of the essential oil extracted from solvent free extraction and steam distillation of various leaves Solvent free Steam extraction Distillation Pungent Burnt Citronella Heavy minty Minty Fresh piney Burnt piney Orange peel Sharp citrusy Citrusy Fig. 1: Comparison chart between solvent free extraction and steam distillation 3.3. Scanning electron microscope (SEM) Fig. 2: Essential oil gland (oil cell) before extraction and ruptured essential oil gland after extraction with solvent free extraction 3.4. Analysis by gas chromatography (GC) From the superimposed graph between solvent free extraction technique and steam distillation in Figure 5, it can be observed that same compound is available in essential oil obtained from the two different techniques. For solvent free extraction technique [Fig. 3] the compound detected at retention time of 6 44

minute to 20 minute showed higher amount of the compound as the entire peak height is higher compared to the peak for hydro-distillation. The compounds detected at retention time longer than 20 minutes were lesser but distinguishable, on the other hand for the steam distillation technique [Fig. 4], more peaks showed up after 20 minutes and the compound peaks are messier. This implies that new compounds were generated during the extraction which have reduced the intensity peaks for the lower retention time compounds. Fig. 3: Graph for GC analysis of extraction by solvent free extraction technique Fig. 4: Graph for GC analysis of extraction by steam distillation technique Fig. 5: The superimposed graph between the solvent free extraction techniques indicated by black line and the extraction by steam distillation by pink line. 4. Conclusion Closed system extraction technique produced superior quality essential oil and higher yields due to zero loss to surrounding or vacuum. This essential oil extraction technique can be the future of essential oil extraction in the industry. This technique can revolutionize, icrease and hasten the amount of study on essential oil in the future. This technique saves time and cost efficient since the extraction has fewer processes, no purification needed, contains less impurities and saves energy. The solventless extraction technique is applicable in extraction of essential oil for any plant species that contain volatile and sublimation compound property. This technique is better than the current conventional technique because it can be used to extract essential oil from heat sensitive botanical material since the extraction can be done at room temperature or temperatures below 100 ºC. 5. Acknowledgment 45

This research project was financially supported by Fundamental Research Grant Scheme, Ministry of Education Malaysia. This new technology has been patented in Malaysia (PI 2012001977) 6. References [1] M. Hunter, Essential Oils: Art, Agriculture, Science, Industry and Entrepreneurship; New York: Nova Science Publisher, 2009. [2] A. Katiyar, D. Singh, and B. N. Mishra, Essential oil: Production for health care in current scenario, Annals of Biology Research, vol. 1, no.3, pp. 200-209, 2010. [3] M. D. Castro, M. M. Carmona, and V. Perez, Towards more rational techniques for the isolation of valuable essential oils from plants, Trend in Analytical Chemistry, vol. 8, no. 11, pp. 708-716, 1999. [4] S. A. Rezzoug, C. Boutekedjiret, and K. Allaf, Optimization of operating conditions of rosemary essential oil extraction by fast controlled pressure drop process using response surface methodology, Journal of Food Engineering, vol. 1, pp. 9-17, 2005. [5] S. Chantai, S. Prachakoll, C. Ruangviriyachai, and D. L. Luthria,, Influence of extraction technology on the analysis of the five major volatile aromatic compound of Citronella grass (Cymbopogun nardus) and Lemongrass (Cymbopogun citratus) grown in Thailand, Journal of Association of Official Analytical Chemist, vol. 95, pp. 763-772, 2012. 46