Rye Flour and Resting Effects on Gingerbread Dough Rheology

Similar documents
Application & Method. doughlab. Torque. 10 min. Time. Dough Rheometer with Variable Temperature & Mixing Energy. Standard Method: AACCI

The Brabender GlutoPeak A new type of dough rheology

THE CONSISTOGRAPHIC DETERMINATION OF ENZYME ACTIVITY OF PROTEASE ON THE WAFFLE

New challenges of flour quality fluctuations and enzymatic flour standardization.

The Brabender GlutoPeak Introduction and first results from the practice

Measurement of Water Absorption in Wheat Flour by Mixograph Test

RHEOLOGICAL BEHAVIOR OF DOUGH WITH ADDED POTATO (VARIETIES LAURA AND IMPALA) IN PRESENCE OF NaCl AND Saccharomyces cerevisiae

Potential of breadfruit from a food security perspective in Mauritius

GENOTYPIC AND ENVIRONMENTAL EFFECTS ON BREAD-MAKING QUALITY OF WINTER WHEAT IN ROMANIA

Pélcr Sipos. Zollin Györi: EVALUATION OF FOOD ADDITIVES ON THE RHEOLOGIC PROPERTIES OF WINTER WHEAT FLOURS

Correlations between the quality parameters and the technological parameters of bread processing, important for product marketing

DEVELOPMENT AND STANDARDISATION OF FORMULATED BAKED PRODUCTS USING MILLETS

Influence of flour quality of different extraction ratio on the rheological properties of biaxial extesnion induced by the alveograph

"Lucian Blaga" University from Sibiu PHD THESIS ~ABSTRACT~

The C.W. Brabender 3-Phase-System Tools for Quality Control, Research and Development

Pointers, Indicators, and Measures of Tortilla Quality

Cereal Chemistry. The potential utilization of Mixolab for the quality evaluation of bread wheat genotypes

Enzymes in Wheat FlourTortilla

Recent Developments in Rheological Instruments

F&N 453 Project Written Report. TITLE: Effect of wheat germ substituted for 10%, 20%, and 30% of all purpose flour by

Crackers, biscuits and cookies processing and factors that affect quality parameters and consumer s acceptability

THE INFLUENCE OF THIAMINE IN THE FERMENTATION OF THE WINE YEASTS

Studies regarding the obtaining and sensory analysis of gluten-free muffins with buckwheat flour addition

What s New? AlveoLab, SRC-CHOPIN, Mixolab 2. CHOPIN Technologies Geoffroy d Humières

Use of Lecithin in Sweet Goods: Cookies

Wheat Quality Attributes and their Implications. Ashok Sarkar Senior Advisor, Technology Canadian International Grains Institute

FUNCTIONAL AND TECHNOLOGICAL PROPERTIES OF OAT GRAIN AND A LINE OF PROMISING FOOD PRODUCTS ON ITS BASIS

STUDIES REGARDING THE FERMENTATIVE ACTIVITY OF SOME SORTS OF BAKERY YEAST

Brabender GmbH & Co. KG The leading supplier for food quality testing instruments

Development and characterization of wheat breads with chestnut flour. Marta Gonzaga. Raquel Guiné Miguel Baptista Luísa Beirão-da-Costa Paula Correia

The Potential of Enzymes to Improve the Price/ Performance Ratio of Flour

BLUEBERRY MUFFIN APPLICATION RESEARCH COMPARING THE FUNCTIONALITY OF EGGS TO EGG REPLACERS IN BLUEBERRY MUFFIN FORMULATIONS RESEARCH SUMMARY

EFFECT OF LYSOMAX FORMULATION ON RHEOLOGICAL BEHAVIOUR OF DOUGH. Abstract

THE EFFECT OF IMPROVER ON DOUGH RHEOLOGY AND BREAD PROPERTIES

Rheological properties of wheat flour with different extraction rate

ASSESSMENT OF NUTRIENT CONTENT IN SELECTED DAIRY PRODUCTS FOR COMPLIANCE WITH THE NUTRIENT CONTENT CLAIMS

J. M. C. Dang 1 and M. L. Bason 1,2

International Journal of Scientific and Research Publications, Volume 5, Issue 8, August ISSN

Optimisation of frozen prebaked bread s manufacture

SWEET DOUGH APPLICATION RESEARCH COMPARING THE FUNCTIONALITY OF EGGS TO EGG REPLACERS IN SWEET DOUGH FORMULATIONS RESEARCH SUMMARY

This is a refereed journal and all articles are professionally screened and reviewed

Herbacel TM Classic Plus AF 60/100 for different types of gingerbread

CHAPTER 1 INTRODUCTION

EVALUATION OF BIOCHEMICAL AND CHEMICO-TECHNOLOGICAL INDICATORS OF MAIN GRAINS CULTIVARS PRODUCED DURING IN ALBANIA

Assessing the Handleability of Bread Dough

21 st Annual IAOM Mideast & Africa District Conference November 2010

CHOPIN Technologies' solutions for measuring dough tenacity, extensibility, elasticity and baking strength

Evaluation of quality characteristics of soy based millet biscuits

BAKING SCIENCE AND TECHNOLOGY

WHEAT FLOUR OCEANIA IMPEX AUSTRALIA PTY LTD. Oceania Impex Australia Pty Ltd

Ulrick&Short. Technical Briefing Functionality of Sugar in Cakes. starches flours fibres proteins. Technically the Best

The Effect of Almond Flour on Texture and Palatability of Chocolate Chip Cookies. Joclyn Wallace FN 453 Dr. Daniel

Effect of Differently Treated Soyabean Flour on Quality of Biscuits

CHAMPION TOC INDEX. How To Make Barley Silage. Arvid Aasen. Take Home Message. The Ensiling Process

FOOD SCIENCE GLUTEN FORMATION

ASSORTMENT OF WINE IN HIGH QUALITY TARNAVE VINEYARD

Use of a New GH8 Family Xylanase in Baking and Milling

FUNCTIONAL PROPERTIES OF FLOURS PREPARED FROM GLUCOSINOLATE RICH VEGETABLES: ALUGBATI (Basella rubra)

Quality of western Canadian wheat 2006

RESEARCH ON CHANGE IN PROTEIN COMPOSITION DURING DOUGH PROCESSING

Make Biscuits By Hand

DEVELOPMENT OF MILK AND CEREAL BASED EXTRUDED PRODUCTS

Paper No.: 09. Paper Title: BAKERY AND CONFECTIONERY TECHNOLOGY. Module 14: Technology of Wafer Biscuits

INFLUENCE OF THE ADDITION OF XYLANASE ON THE QUALITY OF WHEAT PREBAKED

CHEESECAKE APPLICATION RESEARCH COMPARING THE FUNCTIONALITY OF EGGS TO EGG REPLACERS IN CHEESECAKE FORMULATIONS RESEARCH SUMMARY

Bread Crust Thickness Estimation Using L a b Colour System

Process standardization of low-calories and low-sugar kalam

Gluten Replacement Save cost & maintain quality by using more soft wheat & improvers in baking and pasta applications

EFFECT OF TOMATO GENETIC VARIATION ON LYE PEELING EFFICACY TOMATO SOLUTIONS JIM AND ADAM DICK SUMMARY

The Neapolitan Pizza

Rheological properties of papaya enriched wheat flour for baked products

SPLENDID SOIL (1 Hour) Addresses NGSS Level of Difficulty: 2 Grade Range: K-2

Identifying Soft White Wheat Functional Characteristics for Saltine Crackers

EFFECT OF REPLACEMENT OF SUGAR WITH SUCRALOSE AND MALTODEXTRIN ON RHEOLOGICAL CHARACTERISTICS OF WHEAT FLOUR DOUGH AND QUALITY OF SOFT DOUGH BISCUITS

Vegan minced meat alternatives with healthy dietary fibre concentrates

Quality of western Canadian wheat exports 2010

NEAR INFRARED SPECTROSCOPY (NIR) -SPECTROSCOPY, COLOUR MEASUREMENT AND SINGLE KERNEL CHARACTERIZATION IN RYE BREEDING

Studies on Utilization of Buttermilk in Chapati Making

COMPARATIVE ANALYZE BETWEEN CHEESES OBTAINED FROM UNPASTEURIZED AND PASTEURIZED MILK. Abstract. Introduction

Functions of Raising Agents

Phase Separation of Wheat Flour Dough Studied by Ultracentrifugation and Stress Relaxation. II. Influence of Mixing Time, Ascorbic Acid, and Lipids

The effect of Ultragrain white whole wheat flour in sugar cookies.

CHAPTER GELATIN. In this chapter you will learn to

Quality of western Canadian wheat exports 2008

INFLUENCE OF GAMMA RADIATION ON RHEOLOGICAL PROPERTIES OF WHEAT FLOUR

Survey Overview. SRW States and Areas Surveyed. U.S. Wheat Class Production Areas. East Coast States. Gulf Port States

SPONGE CAKE APPLICATION RESEARCH COMPARING THE FUNCTIONALITY OF EGGS TO EGG REPLACERS IN SPONGE CAKE FORMULATIONS RESEARCH SUMMARY

Preparation of a malt beverage from different rice varieties

BINDING. Functional properties of food

Qualitative assessment of flour with a depth consistency meter and the consistence of dough with medium rate of viscosity

Quality of western Canadian wheat exports 2011

Quality INVESTIGATION of Rice Noodles Safe from Gluten

1. Name of the Module: Technology of Cereals and Pulses Based Products 2. Sector: Food Processing & Preservation 3. Code: FPPRN

ANALYSIS OF THE EVOLUTION AND DISTRIBUTION OF MAIZE CULTIVATED AREA AND PRODUCTION IN ROMANIA

The influence of potato varieties grown in Fagaras area on rheological characteristics of dough for bread with potatoes

Studies on the preparation of chapatti and biscuit supplemented with potato flour

Grain Craft. Thresher Seed Days Fort Hall, ID

EFFECT OF ARTEMISIA SPHAEROCEPHALA KRASCHEN ON THE RHEOLOGICAL PROPERTIES OF BUCKWHEAT FLOUR

A Farinograph Study on Dough Characteristics of Mixtures of Wheat Flour and

ENZYME PREPARATION IN SECONDARY FERMENTATION AND MATURATION PROCESS IN BREWING INDUSTRY. Abstract

Transcription:

Bulletin UASVM Animal Science and Biotechnologies 70(2)/2013, 369-374 Print ISSN 1843-5262; Electronic ISSN 1843-536X Rye Flour and Resting Effects on Gingerbread Dough Rheology Anca TULBURE 1), Mihai OGNEAN 2), Claudia F. OGNEAN 2), Ioan DANCIU 2) 1) Extra Sib SA, 70 Alba Iulia Av., Sibiu, Romania; anca.tulbure@extrasib.ro 2) Faculty of Agricultural Sciences, Food Industry and Environmental Protection, Lucian Blaga University, 10 Victoriei Blvd., Sibiu, Romania Abstract. Dough represents a decisive stage during manufacturing of all products, which have as main ingredient flour. Rheology describes the properties of doughs and explains their behavior during processing. Gingerbread dough is very complex. The aim of this work was to explore how replacement of wheat four with rye flour and resting time improved dough rheology. Brabender Farinograph E and Farinograph method AACC 54-21, Constant Dough Weight Procedure were used to evaluate rheological properties of dough. Dough development was delayed through low water content and high level of sugars. Wheat flour replacement with rye flour improved rheology, the doughs were formed more rapidly and were less sticky. Dough resting allows the flour components to hydrate and the dough become more consistent and dryer. A 25-30% wheat flour replacement seemed to be optimum. Keywords: gingerbread, rheology, dough, rye flour, farinograph INTRODUCTION For all bakery products dough properties are very important, they influence the stages of dough processing but also some of the final products characteristics are also influenced: form, height, crumb porosity, specific volume and symmetry. Rheological properties of dough are important also for other products, as pasta, biscuits, cookies and gingerbread. Sensitive instrument were developed recently for modern food science, to explore the rheology in fundamental way but despite of that, the older instruments, more empirical, remain very popular (Weipert, 2006). Older instruments are improved, digitized, and new ones are created. Empirical rheometers remain very popular through scientist and technologist, which work in the field of bread making. Dough rheology, of other product than bread, is very important to control the quality of products. Gingerbread is a very popular product, especially during the winter (Christmas) but it is consumed during the entire period of year. The gingerbread production is tricky because its complex recipe and difficult to process dough. For other product, such as biscuits or cookies, were made many researches related with dough rheology (Blanchard, 2012; Fustier, 2009; Pedersena, 2007; Sudha, 2007; Van Bockstaele, 2011) but the rheology of gingerbread remain little explored (from the authors knowledge). Gingerbread products specific for Romanian market are similar to German products but not identical. Gingerbread characteristics are related to other bakery products as biscuit, cookies and cakes. The main ingredient for gingerbread production is flour. For the gingerbread product are used rye flour and wheat flour. The dough from rye is very sticky and difficult to process so the wheat flour is preferred. Through this replacement the dough rheology is improved but the textural properties of gingerbread is affected. Under the consumers demand for high quality product wheat flour must be replaced with rye four. It is 369

necessary to understand better the dough rheology to prepared doughs, which could be process easier and with better results. This work intends to study the effect of rye flour used to replace the wheat flour commonly used in Romanian gingerbread production. We studied the dough rheology during kneading and resting period. MATERIALS AND METHODS The kneading properties of dough were investigated using Brabender Farinograph-E. The gingerbread formula is very complex; flours represented, by weight, only half of ingredients present. Because of that Farinograph method AACC 54-21, Constant Dough Weight Procedure (AACC, 1995) was used. The replacement of wheat flour was in 20, 30, 40 and 50%. The mixing period was 60 minutes. The formulas are presented in table 1. Flours were added as equivalent to 14% moisture. All ingredients, except flour and baking agent were mixed separately before testing and were added after in the mixing bowl over flours and baking agents. Wheat flour with 0.65% d.w ash and rye flour with 0.9% d.w. ash were used, 14.6% and respectively 14.2% water content. All other ingredients used were raw material for gingerbread industrial production. Tab. 1 Gingerbread formula Ingredients 370 Weight (g) Wheat and rye flour 258.1 Sodium bicarbonate 3.41 Ammonium bicarbonate 1.68 SAPP 28 1.68 Spices 4.6 Salt 0.82 Lecithin 1.7 Solid vegetable fat 17.3 Sorbitol 13.9 Glycerin 2.3 Honey 9.1 Invert sugar syrup 137.4 Caramel 27.9 TOTAL 480 Doughs prepared on industrial planetary mixer were weight, 480 g, after 0; 60 and 150 minutes of resting and placed in the mixer bowl. The mixing period was 20 minutes, at 30 C. RESULTS AND DISCUSSIONS Gingerbread doughs were mixed for 60 minutes but this period of time was not enough for complete development of dough so the dough consistency and time development could not be determined. After 60 minutes the consistency was higher than 1000 BU so, the kneading was stropped. To evaluate the mixing curve we analyzed the dough consistency at

different period of time, up to 60 minutes of kneading (Fig. 2) and time necessary to achieve the consistency of 500 BU and 1000 BU (Fig. 3) In Figure 1 are presented the farinogram of gingerbread dough with 100% and 50% wheat flour. The consistency of dough, with rye flour, rise more rapidly than the consistency of dough with only wheat flours, but the final consistencies is not very different. The consistencies of all doughs during mixing are presented in Figure 2. Fig. 1. Gingerbread dough mixing curve (left-100% wheat flour; right-50% wheat flour) Fig. 2. Dough consistencies during mixing at different wheat flour: rye flour ratio The doughs with a higher proportion of rye flour were formed more rapidly than the doughs with only wheat flour. This is more obvious for the doughs with 100% and 50% wheat flours. The consistency increased rapidly and after that we observed a stabilization tendency. At intermediate ratio the maximum consistency were lower. The gingerbread dough is very rich in sugars and has a very low water content (around 24%) comparative with doughs for bread. The low level of water and high levels of sugars inhibit the hydration of flour components, especially protein, which will form gluten. In doughs with high level of rye flours the hydration occur more rapidly, the arabinoxylans swell rapidly and form more viscous dough (Izydorcszyk, 2007). If we assimilate the width of mixing curve with dough 371

elasticity (Bordei, 2007) the doughs with rye flour were more elastic. The mixing curve is formed from many peaks, some of them higher than others. In normal doughs the differences are not very obvious so the mixing curve appears as a band. The mixing curve of gingerbreads doughs is formed from peaks with very different height, so it appears as very irregular. This was more easily observed in the last part, were the dough is very sticky. We consider that the mixing curve with such aspect indicates sticky dough; higher curve s width and very irregular margins indicate stickier dough. The development time of doughs could not be determined, being longer than 60 minutes. To estimate how rapidly the doughs were formed we measured the time necessary to reach 500 and 1000 BU consistency. The values are presented graphically in figure 3. The absorption of water and forming of dough were easier in the doughs with higher amount of rye flour than in the dough with only wheat flour. At 1000 BU for the dough with 30% rye flour the consistency is highest. We must consider that during the mixing in dough different processes occur, processes with antagonist effect. The flour s component hydration increase the dough s consistency by gluten formation and water absorption while through a longer mixing time the gluten is weakened and consistency decreased. The medium is very complex and difficult to analyze. Fig. 3. Necessary time for dough consistency to To improve the dough rheology it is a common method to rest the dough. During resting the dough become more plastic, pliable, less elastic and very often the consistency decrease by enzymatic hydrolysis of gluten. In Figure 4 could be observed how the dough rheology is influenced during resting. Dough resting was realized at 25 C. The initial consistency increased during resting, from 371 BU to 570 and 650BU after 1 and respectively 1 ½ hour of resting. Dough with no resting period had a relative low consistency and, if we consider the mixing curves from Figure 2, which indicated an incomplete mixing. During resting the water was absorbed by flour components and the consistency increase despite no gluten formation occur during resting. We considered that during resting gluten relaxation appear because appear a small increases of consistency immediately after beginning of mixing. Longer resting time determined a better hydration and the dough consistency was higher than the consistency of dough with no resting. We observed a tendency for mixing 372

curves first to decrease and after reaching a minimum to increase again. Again, the minim consistency was lower for dough with no resting. 0 min 60 min 150 min Fig. 4. The mixing curve of plant gingerbread dough with 0 minutes, 60 minutes and 150 minutes resting CONCLUSION The rheology of gingerbread doughs is very complex. The high level of sugars inhibited the flour hydration and gluten development. Dough rheology was improved by replacing wheat flour with rye flour. Rye flour components adsorb water easily so development time was reduced. The gluten lack of rye flour reduced the dough consistency and development time. The kneading time must be shorter than the time necessary for a complete development of dough. During the resting time the water adsorption continued and the dough become harder and dryer. Longer time of resting leaded to more consistent doughs. 373

Acknowledgments. This work was co-financed from the European Social Fund through Sectorial Operational Program Human Resources Development 2007-2013, project numbered 76851 Harmonization of Romanian academic valences to those of European Community REFERENCES 1. AACC. (1995). AACC Approved Methods, 9th edition. St. Paul, Minnesota: American Association of Cereal Chemists. 2. Blanchard, C., Labouré, H., Verel, A., Champion, D. (2012). Study of the impact of wheat flour type, flour particle size and protein content in a cake-like dough: Proton mobility and rheological properties assessment. Journal of Cereal Science 56: 691-698. 3. Bordei, D. (2007). Controul calitatii in industria panificatiei. Metode de analiză. Editura ACADEMICA. GalaŃi. 4. Fustier, P., Castaigne, F., Turgeon, S.L., Biliaderis, C.G. (2009). Impact of endogenous constituents from different flour milling streams on dough rheology and semi-sweet biscuit making potential by partial substitution of a commercial soft wheat flour. LWT - Food Science and Technology. 42: 363 371. 5. Fustier, P., Castaigne, F., Turgeon, S.L., Biliaderis, C.G. (2009). Impact of commercial soft wheat flour streams on dough rheology and quality attributes of cookies. Journal of Food Engineering. 90: 228 237. 6. Izydorcszyk, M.S., Biliaderis, C.G. (2007). Arabynoxylans: Technologically and Nutritionally Functional Plant Polysaccharides in Functional Food Carbohydrates. Ed. Izydorcszyk, M.S., Biliaderis. Taylor & Francis Group, Boca Raton, Londra, New York. 7. Pedersena, L., Jørgensenb, J. R. (2007). Variation in rheological properties of gluten from three biscuit wheat cultivars in relation to nitrogen fertilisation. Journal of Cereal Science. 46:132 138 8. Sudha, M.L., Vetrimani, R., Leelavathi, K. (2007). Influence of fibre from different cereals on the rheological characteristics of wheat flour dough and on biscuit quality. Food Chemistry. 100: 1365 1370. 9. Sudha, M.L., Srivastava, A.K., Vetrimani R., Leelavathi, K. (2007). Fat replacement in soft dough biscuits: Its implications on dough rheology and biscuit quality. Journal of Food Engineering. 80: 922 930. 10. Van Bockstaele, F., De Leyn I., Eeckhout M., Dewettinck K. (2011). Non-linear creeprecovery measurements as a tool for evaluating the viscoelastic properties of wheat flour dough. Journal of Food Engineering 107: 50 59. 11. Weipert, D. (2006). Fundamentals of Rheology and Spectrometry. Rheology. in Future of Flour: A Compendium of Flour Improvement. Editor Lutz Popper. Publisher AgriMedia. 374