Comparison of Lysozyme Purification from Egg White Between Ion Exchange Chromatography and Precipitation

Similar documents
Separation of Ovotransferrin and Ovomucoid from Chicken Egg White

Sequential Separation of Lysozyme, Ovomucin, Ovotransferrin and Ovalbumin from Egg White

An Economic And Simple Purification Procedure For The Large-Scale Production Of Ovotransferrin From Egg White

SH2 superbinder modified monolithic capillary column for. the sensitive analysis of protein tyrosine phosphorylation


Model 48 Resilient Wedge Gate Valve

Bahnhofstrasse 18, 3920 Zermatt. Täglich, Zwischsaison Sonntag und Montag Mittag geschlossen

Worm Collection. Prior to next step, determine volume of worm pellet.

Separation of ovotransferrin from chicken egg white without using organic solvents

One class classification based authentication of peanut oils by fatty

CONCENTRATION OF AROMA AND VITAMIN RICH FRUIT JUICES BY COMPLEX MEMBRANE TECHNOLOGY

Analytical Method for Coumaphos (Targeted to agricultural, animal and fishery products)

Journal of Chemical and Pharmaceutical Research, 2017, 9(9): Research Article

Application Note: Analysis of Melamine in Milk (updated: 04/17/09) Product: DPX-CX (1 ml or 5 ml) Page 1 of 5 INTRODUCTION

Determination of Pesticides in Coffee with QuEChERS Extraction and Silica Gel SPE Cleanup

Determination of Melamine Residue in Milk Powder and Egg Using Agilent SampliQ Polymer SCX Solid Phase Extraction and the Agilent 1200 Series HPLC/UV

Flowering Time, Amount of Pollen and Characteristics of Pollen Germination of Actinidia arguta Male Flower

TSKgel TECHNICAL INFORMATION SHEET No. 131

High Pressure Carbon Dioxide Technology. Application to Orange Juice.

Facile Synthesis of [(NHC)MCl(cod)] and [(NHC)MCl(CO) 2 ] (M= Rh, Ir) complexes

DNA Extraction from Radioative Samples Grind plus kit Method

WineEng - NZ Winery Resources Future Challenges. The National Conference & Exhibition of the WEA

EXTRACTION PROCEDURE

Food Safety in Wine: Removal of Ochratoxin a in Contaminated White Wine Using Commercial Fining Agents

Enzymatic Hydrolysis of Ovomucin and the Functional and Structural Characteristics of Peptides in the Hydrolysates

The Determination of Pesticides in Wine

The wine proteins: origin, characteristics and functionality

DNA extraction method as per QIAamp DNA mini kit (Qiagen, Germany)

In Vitro NER Assay. Auble Lab. Reagents:

Effect of Pre-treatment and Storage Conditions on the Quality Characteristics of Ginger Paste

Supplementary Table 1 PHYC haplotypes of A. thaliana strains.

Higher Resolution Separation of Organic Acids and Common Inorganic Anions in Wine

Comparison of Milk-clotting Activity of Proteinase Produced by Bacillus Subtilis var, natto and Rhizopus oligosporus with Commercial Rennet

International Power, Electronics and Materials Engineering Conference (IPEMEC 2015)

THREE NEW HIGHLY CONDENSED RESVERATROL OLIGOMERS FROM INDONESIAN VATICA PAUCIFLORA BLUME (DIPTEROCARPACEAE)

INERIA MATERIALELO ING

RESOLUTION OIV-OENO DETECTION OF CHITINASE AND THAUMATIN-LIKE PROTEINS IN WHITE WINES

A Comparative Study on Casein and Albumin Contents in Cow and Commercial Milk Samples

7. Black Gram Husk Introduction. Figure 189: Image of Black gram with peels

PECTINASE Product Code: P129

Properties of Water Lab: What Makes Water Special? An Investigation of the Liquid That Makes All Life Possible: Water!

Extraction of Acrylamide from Coffee Using ISOLUTE. SLE+ Prior to LC-MS/MS Analysis

Salting-out Extraction of 2,3-Butanediol from Jerusalem artichoke-based Fermentation Broth *

High Sensitivity Quantitation Method of Dicyandiamide and Melamine in Milk Powders by Liquid Chromatography Tandem Mass Spectrometry

Fig.1 Diagram of vacuum cooling system [7-8]

Lin-Fa Salad. Peking Duck

Profiling of Aroma Components in Wine Using a Novel Hybrid GC/MS/MS System

Ochratoxin A N H. N-{ [(3R)-5-chloro-8-hydroxy-3-methyl-1-oxo-3,4-dihydro-1H-isochromen-7-yl]carbon yl}- L-phenylalanine

At harvest the following data was collected using the methodology described:

Maxiprep - Alkaline Lysis

Supporting information for J. Med. Chem., 1992, 35(16), , DOI: /jm00094a025 BLOOM

Parametric Studies on Batch Alcohol Fermentation Using Saccharomyces Yeast Extracted from Toddy

Wine Finishing: Testing and achieving protein and tartrate stability in wine A note on clarity and increasing juice yield

Biochemical changes in low-salt solid-state fermented soy sauce

Rev. 3/15/13 COMMODITIES & STANDARDS ** NTE CCODE PRODUCT PHOS COLI KEY: 16A Cheddar Cheese 10 ** n less than 1 microgram phenol/gram or equivalent

Simultaneous Co-Fermentation of Mixed Sugars: A Promising Strategy for Producing Cellulosic Biofuels and Chemicals

Notes on acid adjustments:

Identification of reconstituted milk in pasteurized and UHT milk

1!O! 7O %!O %! 7O %8!O. 7O 1!O 4. 7O. 4!O h À

Chemical composition and allergic activity of bread Relationship to non-yeast microorganisms and baking temperatures-

Appetizers. A Generous Portion of Lightly Fried, Tender Calamari. Served With Our Homemade Marinara Sauce

Functional Dyeing and Finishing Using Catechins Extracted from Green Tea (II)

Response of Maturity Group IV early soybean cultivars to stem canker, 2018.

Effects of Adulteration Technique on the NIR Detection of Melamine in Milk Powder

Tartrate Stability. Mavrik North America Bob Kreisher, Ph.D

Case Doc 294 Filed 01/15/16 Entered 01/15/16 18:55:07 Desc Main Document Page 1 of 31

2016 Sep 1 Thu 2016 Sep 2 Fri 2016 Sep 3 Sat. IZ PerII 01(07)04D FO Ori 03(08)04D Y Leo L03(07)04D

Free Sugar and Organic Acid Content of the Unripe and Ripe Jujube (Zyziphus jujuba) as Honey Plant

Using Pineapple to Produce Fish Sauce from Surimi Waste

Miniprep - Alkaline Lysis for BACs

Rapid Tea Analysis on Poroshell 120 SB-C18 with LC/MS

2016 May 1 Sun 2016 May 2 Mon 2016 May 3 Tue. Y Leo 01(05)02L CM Lac 01(03)03D BH Dra 02(05)03D

Predictions for Algol type Eclipsing Binaries in September 2017

Newsletter. DIARY SHEET 29th November 5th December A er School Care and Prep but NO Clubs

GERMANY (SXF)Berlin Schonefeld- Berlin Schönefeld Airport. Airport Charges

EXTRACTION OF SEDIMENTS FOR AROMATIC AND CHLORINATED HYDROCARBONS

Solid Phase Micro Extraction of Flavor Compounds in Beer

THE CONSISTOGRAPHIC DETERMINATION OF ENZYME ACTIVITY OF PROTEASE ON THE WAFFLE

PASTEURISATION; STERILISATION; PRESERVATION; PURIFICATION; CLARIFICATION; AGEING

There are widespread problems with the Hagerman and

P.R. Fresquez.

Abstract Process Economics Program Report 236 CHEMICALS FROM RENEWABLE RESOURCES (March 2001)

Comprehensive analysis of coffee bean extracts by GC GC TOF MS

Determination of Caffeine in Coffee Products According to DIN 20481

STUDIES ON THE HORTICULTURAL AND BREEDING VALUE OF SOME STRAWBERRY, RASPBERRY AND BLACKBERRY GENOTYPES

We make it easy to be green! Our modular design and portion control technology reduces waste and provides the simplest way to add a bulk foods

DEVELOPMENT OF MILK AND CEREAL BASED EXTRUDED PRODUCTS

AccuID TM _V1. Bone DNA Preparation Protocol. SNP based New Human Identification Technology. Protocol Version

Ilio Volante. Composer: Italia, Rome

Comparative Study on the Nutritional Value of Pidan and Salted Duck Egg

2,300, ,000 2,990, , , , , , ,000 3,700,000 1, 110,000 4,810,000

Effect of packaging materials on the storage conditions of salad cream from cassava, sweet potato and three leaf yam starches

ANALYSES OF EGG WHITE PROTEINS FROM DIFFERENT SPECIES BY CHROMATOGRAPHIC AND ELECTROPHORETIC METHODS

Measuring Sulfur Dioxide: A Perennial Issue. Tom Collins Fosters Wine Estates Americas

Effect of Row Spacing on Yield, Yield Components and Crude Oil of Autumn and Spring Sowed Mustard (Sinapis arvensis L.) in Eight Locations of Turkey

Determination of the concentration of caffeine, theobromine, and gallic acid in commercial tea samples

Bioethanol Production from Pineapple Peel Juice using Saccharomyces Cerevisiae

Somchai Rice 1, Jacek A. Koziel 1, Anne Fennell 2 1

Extraction by subcritical water of polyphenols from Dunkelfelder and Cabernet Franc grape pomace coupled with membrane filtration

Transcription:

HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 332-336 305-764 220 (2002 9 5, 2003 3 24 ) Comparison of Lysozyme Purification from Egg White Between Ion Exchange Chromatography and Precipitation Hyoung Won Kim and In Ho Kim Department of Chemical Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, Korea (Received 5 September 2002; accepted 24 March 2003)! lysozyme" #$. % &, gradient system '() *+,-./ 01 2+" 34 56 $. 78 *+ 0M 1M NaCl *+9:" ;<=>? lysozyme @$ A8./) BCD E$ A SDS-PAGE" FG 3 H I>$. JK LG MNOPQ RS $. MNOPQ) *+",-RT56UV, lysozyme I $1 8 WXE RYU Z[$. \ R]8 +",-RT lysozyme) H^,-" _`#$. Abstract Ion exchange chromatography(iec) with gradient and precipitation were used to purify lysozyme from egg white. In IEC, elution of lysozyme from 0 M to 1 M NaCl gradient was performed and SDS-PAGE showed that lysozyme was selectively purified from other egg white proteins. In addition to IEC, egg white proteins were salted out with ammonium sulfate to compare the effectiveness of precipitation method with IEC. The concentrations of ammonium sulfate were varied from 25% to 85%. Precipitation was not able to purify solely lysozyme from egg white. Recovery of lysozyme in the precipitation was improved by changing precipitation temperature and aging time. Key word: Chromatography, Precipitation, Lysozyme 1. Lysozyme peptidoglycan N-acetylmuramic acid N-acetylglucosamine β-1,4-muramidic bond, micrococcus lysodeikticus! " #$ %& ' $ ([1]. ) ' *+ lysozyme,-.,,/0,, # ' $ 123 45-6 78 9, :-, ;< =>? @. AB lysozyme CDE 6D% FG? :%&3 %1, = H # I7 # JK LM6 7N? B. O? PQ K lysozyme 73, RS B TU VWX YZ% & N[$ (3 45 U I7N? B[2]. U B \]^X_ lysozyme `^ Da, bc, J^ d ef^ # gh To whom correspondence should be addressed. E-mail: ihkim@cnu.ac.kr 75 41i jw k lm n 0.3% Q o. jw lysozyme lu^x p fqm rst, u/d pvw N *+ u/x> Q wyb z{ }~ 4[3, 4]. VWX$ h 1 4. k ƒ lysozyme$ u/!w{ ˆ N B h d Š6 B ]Œ VWX Ž $ k { ]Œ7, 3Žw_ Ž{ Alderton! Fevold[5] ph 9.5 5% NaCl$ I jw {s lysozyme$ a ŠP %. 1 j W$ ˆ 3! š? N *+!w1 œ.! š? Vž$ LŸN Junowicz! Charm[6] sepharose U?b P 1 3 jw! _ h3 Us lysozyme$ h. pˆ? Ž zl ª «o 3? 8 100% 1i, ' B 1 N *+ ± ² q³w_? ² sw. %?@ Gvµ1 B. Li-Chan #[7] 1 G vµ1 1 332

3 jw{s lysozyme$ h $. N ¹º z»j (3 4 1 ¼f+6 #$ ½¾N column { $ z.! o! ]À³ Á  ZŽ$ L. Ã? ÄÅ Chiang #[8] BÃ! P, ª V lysozyme$ hb!, p ˆ? 70,400 U/mg{ ÆT o 1i ÇŠ ÈÉ ¾Ê V ž 4. BÃ! p ËÌ3 p p fq! š? o3 #! pv scale-up UhN *+ Ghosh #[9] kçí$ BÃ! lysozyme$ h. Gu #[10] scale-up% Î @ VWX$ ¼ Ï%ÐÑ +6ž $ N N«6 Ò? Œ«¹5 B! 90%; activity» $ L. ; +Ó$ Ô B! lysozyme hl 45 Š6 pv ÕB ]Œ sö. k Ž $ pv, }Z Š6 Ø1i Ž p ¾Ê3 Qp Ù. in Ž {? jw lysozyme$ ÚÛw{ h Ü 4² L V Ý Š6 4. Þß à ]Œ Gvµ Ž $ d pv 3 5á!w_ _1! ˆ? â² ]Œ. 2. 2-1. jw ž? ÈÉ on *+ ³ Ø1 ã. Þß $ jw! jä{ hb å jw.æ Éçp 10«èé. h3 3ê^$ 68N 3,000 rpm, 4 o C 30 x h. x h å ë _ Ž^ ìh3 ;#c i$. %> ph 0.1 M HCl 7 D. 2-2. Gvµ Gvµ 1(Bio-rex 70 gel, Bio-Rad Laboratories, U.S.A.) Uh column(330 mm Lí25 mm ID, Spectra/ chrom co., U.S.A.)$. î c! ïê c ph 7 ðñ Z 0.02 M _qÿò c$ 3, / c{ NaCl(`Pó) ïê @ Ÿò c ô. Ž @ äqõ ö qpó Œø. ùéí(mwco : 6,000-8,000) Spectrum Medical Industry(U.S.A.) Œø. 2-3. B ú ûd@ Éç 6gü. 0.02 M _qÿò c (ph 7) ú$ sýþ å 30 `ÿ N%Ð column s 3, 30 Š? ú k U *1 = ª. å cloumn$ òz3 ïê%, ïê Ÿò c 0.02 M _qÿò c(ph 7.0){ 22.0 cm/min ç. 20 Š? h² ïê 7 3, *? $ 0{. ïê å èé%ð pb jw$ ¹ø, 7.37 cm/min 30 `ÿ }¹5 ú lysozyme òý?. %>¹ø å 0.02 M _qÿò c(ph 7) { 22.0 cm/min ç î ú s71 ã ëš^$ 6 8. n 15 Š? î$ ²? % 0{ 5~ ŸŽÝ î7 z$ 4. Gvµ DûÎP lysozyme /% NaCl Ò?Œ«Þ! UÀÎP. Ò?Œ«NaCl 0 Ms 1M1, 0 M 2M1 Ò?ÎP ¹ 3 * UÀ 4.91 cm/ min, 7.37 cm/min{. 31 DûÎP 4 h h B Ž pv 333 /À? 7.37 cm/min{, T 1 Ò?Œ«0M 1 M, 3, T 2 0M 2M Ò?Œ«h3 /À? 7.37 cm/min. 1Í{ T 3 0 M 1M Ò? /À? 4.91 cm/min{. Ò?Œ«UÀ ß11i 5 NaCl Õm?. NaCl ïê% * _ 0.02 M _ qÿò c(ph 7) ô. /% T 1 60 `ÿ }¹ 3 T 2 30 h3 T 3 90 }¹5 /% $ ÎP%. T 1! 3 Æ 2 ±{ 3 T 2 /% { 1 ±{. NaCl /c$ B å ç y75 /71 ã VWX $ 68N 0.5 M NaOH 0.1 M HCl$ ¹ø 3 c ph q d h ¹ø % $ Š 3 %>?. 2-4. - Ò?, G? d Ž% ÎP lysozyme Ž ¹ $. Ž _ jw%> $ jw! jä{ h B å jw$.æ Éçp 10«èé. h3 3ê^$ 68N 3,000 rpm, 4 o C 30 x h. x h å ë _ Ž^ ìh3 ;#ci$. % > 50 ml 0.2 M _qÿò c(ph 7)$ 15 ml ph U1. "^ D p! Ÿò c! "_ %> #3 äqõ ö $ ùø v$. Ò? 25%, 40%, 60% h3 85%. ¹ø 6 `ÿ % $ 3 ª ¹øB å 30 `ÿ v$%ð jw VWX$ Ž%. h3 Ž - Ò? à k B Ž% G? Ž% $ ÎP%Ð. ÇC w{ - Ò? 85% 3, Ž% G? G?_ "^ B z! G B z$ pv 3, Ž% 3% B z! 12% B z$ pv. c$ 3,000 rpm 30 x h ;#c! Ž^$ h. ;#c ìh3 Ž^i$, Ž^$ % 0.2 M _qÿò c(ph 7) ô. -$ 68N MWCO(molecular weight cut off) 6,000-8,000 ùéí$. ùé 0.2 M _qÿò c(ph 7) 250 ml$ ù éc{ 4% Š? ;G. 2-5. %> ˆ? âš M. luteus Li-Chan #[7] âš $. &Q 450 nm 0.066 M _qÿò c(ph 6.24)$ N{ $ * ' @ _qÿò c M. luteus # ()c *N? 0.6 0.7 $ (?. ( )c 2.5 ml %> 0.1 ml$ #5 2? ÎP âš. ˆ? V unit? 0.001 Î * 1 unit. pˆ? B %> s +5 q. jw ˆ? âš Š6V B %>» d Š6? q. Gvµ Ž %> lysozyme UÉ,_N A, ÚÛw{ h7 1 Š w{ -LN ŽN`(15% SDS-PAGE)[11]$ é. % G. 3. 3-1..Ë NaCl Ò?Œ«Þ h[$ -LN T 1! T 2 pv. T 1 / Fig. 1(a). 45s 1051 n 60 / % 3, %> 2 ±{ 300. /$ L² ª 0 15~ 4 z HWAHAK KONGHAK Vol. 41, No. 3, June, 2003

334 Fig. 1. (a) Ion exchange chromatography of egg white solution (from 0 M to 1 M NaCl, elution flow rate: 7.37 cm/min.), (b) 15% SDS-PAGE of collected samples (from 0 M to 1 M NaCl, elution flow rate: 7.37 cm/min). Fig. 3. (a) Ion exchange chromatography of egg white solution (from 0 M to 1 M NaCl, elution flow rate: 4.91 cm/min.), (b) 15% SDS-PAGE of collected samples (from 0 M to 1 M NaCl, elution flow rate: 4.91 cm/min). Fig. 2. (a) Ion exchange chromatography of egg white solution (from 0 M to 2 M NaCl, elution flow rate: 7.37 cm/min.), (b) 15% SDS-PAGE of collected samples (from 0 M to 2 M NaCl, elution flow rate: 7.37 cm/min). $ 4 3, lysozyme ÚÛw{ h 7 1 N SDS-PAGE(Fig. 1(b))! L² VWX! lysozyme h7 5 % /@ z$ 4. %>23 152 41 3 2003 6 ås lysozyme 4, 3 ª56. ú! jw 7 æ VWX G y N 8} /7 % 9 fnn *+. T 2(Fig. 2(a)) V: f;. %> $ éb!, Fig. 2(b) L< T 1! h VWX h71 ã3 `% /75 ÚÛ. / c NaCl Ò? ÈÉ Z VWX! ú! G y? É ç ` % 7 N *+. UÀ $ -LN Ò?Œ«ç 3 /UÀ$ Î P%. 7.37 cm/min(fig. 1(a))! 4.91 cm/min(fig. 3(a)) T p v², ª T ª ª 0 =>3 SDS-PAGE(Fig. 3(b)) L² 4<  9.?Ý} UÀ$ @ç ² /À? á}x A -2ß %> %? B5C. T ˆ? h3 Š6? Table 1 =>. ¹ø%> ˆ? @ %> ˆ? +5 $ Œ D % %>! lysozyme$ Š6N B %> $ Œ. Š6? ¹ø%> pˆ? %> pˆ? p Œ. T 2 71.3% ª T p Ø1 œ 3 AB lysozyme$ ÚÛw{ h1? œ. T 1! 3 E ÚÛw{ lysozyme$ h% 3 Š6 Š? pf. T 1 152 %>s 222 %>1 ² 82.7% 1.1«Š6@ h3 T 3 242 %>s 37 2 %>1 81.6%, 1.2«Š6@ lysozyme$. B % %>? ª T 93.2%, 94% pf. 3-2.! " - Ò? lysozyme h e= $ B! 25% - Ò? lysozyme Ž :51 ã 3 40% ;s

Table 1. Recovery and purification fold in ion exchange chromatography Case 1 (from 0 M to 1 M, 7.37 cm/min) h h B Ž pv 335 Case 2 (from 0 M to 2 M, 7.37 cm/min) Case 3 (from 0 M to 1 M, 4.91 cm/min) Total activity (U, loading sample) 81,000 80,000 87,000 Specific activity (U/ml, loading sample) 2,480 2,130 2,410 Total activity (U, all collected samples) 76,000 57,000 82,000 Recovery (%, all collected samples) 93.2 71.3 94.3 Total activity (U, fractioned samples) 67,000 (No.15-No.22) 71000 (No.24-No.37) Specific activity (U/ml, fractioned samples) 2,804 (No.15-No.22) 2538 (No.24-No.37) Recovery (%, fractioned samples) 82.7 (No.15-No.22) 81.6 (No.24-No.37) Purification fold 1.1 1.2 Table 3. Recovery of lysozyme at various temperature and time from precipitation experiments [At 85% ammonium sulfate, specific activity (U/ml, egg white sample): 2,460] At ice-bath, 30 min At room temperature, 30 min At room temperature, 12h Total activity (U) 69,000 82,000 100,000 Recovery (%) 56.1 66.7 81.3 Fig. 4. 15% SDS-PAGE of precipitated samples. Table 2. Recovery in ammonium sulfate precipitation [Specific activity (U/ml, loading sample): 1,950] 25% 40% 60% 85% Total activity (U) No ppt. 3,600 5,700 69,000 Recovery (%) No ppt. 2.9 4.6 56.1 Ž^ fg z$ SDS-PAGE(Fig. 4),_ 4. Fig. 4 =j z<h - Ò? ÎP Þß Ž7 VWX 7æ ßI. 40% Ž^ 8 m J 45 kda N VWX, - 4 60% ZI"$ 4. Th h3 14.4 kda lysozyme ÚÛw{ Ž71 ã. Ú Ûw{ h :51 ã 1i, Table 2 L² Q o - Ò?_ 85% lysozyme 56% o. p Ò? 40% 60% 5% > ÆT -  ÕD K. ŽG? Ž% $ Table 3 =>,! L² Ë GL ;G, Ž% zl L *? Ø 3 ˆ?? Ø. G? o$ * Ø z? 9 *+ ß3 L3 @ 4 Õs VWX o G?? : U 4[12]. ;G Ž% $ 12% { ² lysozyme $ 81.3%1.% 4. Forsythe # a jw lysozyme$ ŠP%&1 ã3 e jw lysozyme{ ŠP% 1 Dû$ ÎP%Ð Ä3 99.9%1 Ž% L3 4[13]. 3-3. #! " lysozyme $ Gvµ T 2 6ÃB T 1! 3 lysozyme$ ÚÛw{ h. h Q k B _ /U ÀL / c NaCl Ò? 3 0 M 1 M1 / c Ò? ÎP ¹ $ * lysozyme h ÚÛw{ :5C{t? 90% ;{ o. Lysozyme! ú! G y? VWX L / Ms /7 3 s lysozyme $ N B %>? 80% ; o $ =N. Ž B h äqõ ö Ò? ÎP%Ð lysozyme$ ÚÛw{ h} { h71 ã 3? - Ò? Q o 85% äqõ ö$ ¹ø $ * Gvµ $Š?_ 56.1%. Ž%, ŽG? ÎP%Ð $ L ª Dû ª $ ¹. O 81.3%1 $ o 1i Gvµ L 10%. d Q= Á. 4. U B fh ˆ ^X_ lysozyme h * Gvµ Ž $ C 5á!w_1. 'Ý Gvµ gradient system$?ø /Ò? ÎP ¹. 0 M 1M1 Ò?Œ«¹ $ * lysozyme ÚÛw{ h P :5C{ NaCl Ò? ÈÉ o$ T VW X! lq /75 ÚÛ. /UÀ 7.37 cm/min! 4.91 cm/ min: T  9 3?Ý} å T %! c$ Ù N *+ p w. Ž pvw? V 3, - Ò?, Ž%, ŽG? ÎP%Ð $ 81.3%1.% 1i, VWXs lysozyme$ ÚÛw{ h1 œ.!w{ jw lysozyme$ ÚÛw{ hn Gvµ Ž L!wR$ 4. à ]Œ q³ xs SŠNT0U³p _Õóv *ŠVf^ hnt ]ŒW 1x 7 {t :XY2. HWAHAK KONGHAK Vol. 41, No. 3, June, 2003

336 1. Regel, R., Matioli, S. R. and Terra, W. R., Molecular Adaptation of Drosophila Melanogaster Lysozymes to a Digestive Function, Insect Biochem. Molec. Biol., 28(5,6), 309-319(1998). 2. Kim, W. K. and Chung, B. H., Optimization of Chromatographic Separation of Lysozyme from Homogenate of Hen Egg White by Comparison of Breakthrough Behavior, Kor. J. Biotechnol. Bioeng., 14(3), 279-283(1999). 3. Yoshitaka, M., Lysozyme its Chemistry and Application, J. Jap. Soc. Food and Nutr., 24(6), 311-315(1971). 4. Awade, A. C. and Efstathiou, T., Comparison of Three Liquid Chromatographic Methods for Egg-White Protein Analysis, J. Chromatogr. B, 723(1), 69-74(1999). 5. Alderton, G. and Fevold, H. L., Direct Crystallization of Lysozyme from Hen Egg White and Some Crystalline Salts of Lysozyme, J. Biol. Chem., 164, 1-5(1946). 6. Junowicz, E. and Charm, S. E., Purification of Lysozyme by Affinity Chromatography, FEBS Lett., 57(2), 219-221(1975). 7. Li-Chan, E., Nakai, S., Sim, J., Bragg, D. B. and Lo, K. V., Lysozyme Separation from Hen Egg White by Cation Exchange Column Chromatography, J. Food Science, 51(1), 1032-1036(1986). 8. Chiang, B. H., Su, C. K., Tsai, G. J. and Tsao, G. T., Egg White Lysozyme Purification by Ultrafiltration and Affinity Chromatography, J. Food Science, 58(2), 303-306(1993). 9. Ghosh, R., Silva, S. S. and Cui, Z., Lysozyme Separation by Hollow-Fibre Ultrafiltration, Biochem. Eng. Journal, 6, 19-24(2000). 10. Gu, Z., Su, Z. and Janson, J. C., Urea Gradient Size-Exclusion Chromatography Enhanced the Yield of Lysozyme Refolding, J. Chromatogr. A, 918, 311-318(2001). 11. Bollag, D. M. and Ededstein, S. J., Protein Methods, Wiley-Liss, New York, NY(1991). 12. Pak, D. H., Lee, H. J. and Lee, E. K., Crystallization of Alkaline Protease as a Means of Purification Process, Korean J. Chem. Eng., 14(1), 64-68(1997). 13. Forsythe, E. L., Snell, E. H., Malone, C. C. and Pusey, M. L., Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts, J. Crystal Growth, 196, 332-343(1999). 41 3 2003 6