Non-destructive measurement of moisture content in avocado s using handheld near-infrared spectroscopy

Similar documents
NEW ZEALAND AVOCADO FRUIT QUALITY: THE IMPACT OF STORAGE TEMPERATURE AND MATURITY

Avocado sugars key to postharvest shelf life?

EVALUATION OF NEW HASS -LIKE AVOCADO CULTIVARS IN SOUTH AFRICA

As with many biological issues, defining terms such as

UNIVERSITY OF CALIFORNIA AVOCADO CULTIVARS LAMB HASS AND GEM MATURITY AND FRUIT QUALITY RESULTS FROM NEW ZEALAND EVALUATION TRIALS

COMPARISON OF CORE AND PEEL SAMPLING METHODS FOR DRY MATTER MEASUREMENT IN HASS AVOCADO FRUIT

INCREASING PICK TO PACK TIMES INCREASES RIPE ROTS IN 'HASS' AVOCADOS.

Jose Rodriguez-Bermejo and Carlos H. Crisosto University of California, Davis Department of Plant Sciences 1.

Relationship between Mineral Nutrition and Postharvest Fruit Disorders of 'Fuerte' Avocados

Hot water treatment of avocado fruit to induce cold tolerance

Seasonal changes on chemical and physical parameters in six avocado (Persea americana Mill) cultivars grown in Chile

What Went Wrong with Export Avocado Physiology during the 1996 Season?

Low temperature shipping and cold chain management of Fuerte avocados: An opportunity to reduce shipping costs

IMPACT OF RAINFALL PRIOR TO HARVEST ON RIPE FRUIT QUALITY OF HASS AVOCADOS IN NEW ZEALAND

D Lemmer and FJ Kruger

Rapid Tests for Edible Soybean Quality

Ultra-low temperature shipping and cold chain management of Hass avocados: Investigation into reducing shipping costs

Using Growing Degree Hours Accumulated Thirty Days after Bloom to Help Growers Predict Difficult Fruit Sizing Years

Temperature Regimes for Avocados Grown In Kwazulu-Natal

Regression Models for Saffron Yields in Iran

Vibration Damage to Kiwifruits during Road Transportation

THE ELECTRONIC FIRMOMETER

Buying Filberts On a Sample Basis

Proceedings of The World Avocado Congress III, 1995 pp

Harvest times vary between growing regions and seasons. As an approximation, harvest times for the most common types are:

THE INFLUENCE OF MODIFIED ATMOSPHERE STORAGE ON THE QUALITY OF FUERTE AVOCADO FRUIT

A storage temperature regime for South African export avocados

ALTERNATIVES TO SPORTAK

THE INFLUENCE OF WET PICKING ON POST HARVEST DISEASES AND DISORDERS OF AVOCADO FRUIT

STEM-END ROTS : INFECTION OF RIPENING FRUIT

Post-harvest avocado physiology

Flowering and Fruiting Morphology of Hardy Kiwifruit, Actinidia arguta

GROWTH RATES OF RIPE ROT FUNGI AT DIFFERENT TEMPERATURES

1. Continuing the development and validation of mobile sensors. 3. Identifying and establishing variable rate management field trials

Relationship between fruit pulp mineral composition and the ripening profiles of South African Hass avocado fruit

Multispectral image analysis in the germination laboratory

Response of 'Hass' Avocado to Postharvest Storage in Controlled Atmosphere Conditions

THE EFFECT OF ETHYLENE UPON RIPENING AND RESPIRATORY RATE OF AVOCADO FRUIT

EFFECTS OF DROP HEIGHTS AND FRUIT HARVESTING METHODS ON THE QUALITY OF 'HASS' AVOCADOS

A New Approach for Smoothing Soil Grain Size Curve Determined by Hydrometer

Ready2Eat Avocado Development of improved ripening protocols Ernst Woltering Wageningen-UR Food & Biobased Research

Effect of SPT Hammer Energy Efficiency in the Bearing Capacity Evaluation in Sands

SYMPTOMS OF CONTROLLED ATMOSPHERE DAMAGE IN AVOCADOS

ALESSIO TUGNOLO, COMPARISON OF SPECTROSCOPIC METHODS FOR EVALUATING THE PHYTOSANITARY STATUS OF WINE GRAPE, PAGE 6

ETHYLENE RIPENING PROTOCOLS FOR LOCAL AND EXPORT MARKET AVOCADOS

Post-Harvest Vapour Heat Treatment of Hass and Fuerte Avocado

SOME ASPECTS OF THE OIL AND MOISTURE CONTENTS OF AVOCADO FRUIT

Wine-Tasting by Numbers: Using Binary Logistic Regression to Reveal the Preferences of Experts

EFFECT OF FRUCOL APPLICATION ON SHELF LIVE OF IDARED APPLES

THE EFFECT OF GIRDLING ON FRUIT QUALITY, PHENOLOGY AND MINERAL ANALYSIS OF THE AVOCADO TREE

Detecting Melamine Adulteration in Milk Powder

Further refinement of Pinkerton export parameters

Fungicides for phoma control in winter oilseed rape

Sorghum Yield Loss Due to Hail Damage, G A

IS RIPENING AND POST HARVEST QUALITY OF HASS AVOCADOS AFFECTED BY FRUIT WATER STATUS?

Online Appendix to Voluntary Disclosure and Information Asymmetry: Evidence from the 2005 Securities Offering Reform

STUDY AND IMPROVEMENT FOR SLICE SMOOTHNESS IN SLICING MACHINE OF LOTUS ROOT

Physiological gradients in fleshy pericarp of avocado

Session Six Postharvest quality, outturn. New Zealand and Australia Avocado Grower s s Conference September 2005 Tauranga,, New Zealand

Growing divergence between Arabica and Robusta exports

Emerging Local Food Systems in the Caribbean and Southern USA July 6, 2014

Flexible Working Arrangements, Collaboration, ICT and Innovation

AVOCADO FRUIT GROWTH AND MATURITY IN TWO NATAL LOCALITIES

NATIVE MICROWAVE. LEAVE A RESTING TIME to finish cooking and to favour an even cooking, especially meat and fish that need shorter cooking times.

Temperature management of avocados an integrated approach

PERFORMANCE OF HYBRID AND SYNTHETIC VARIETIES OF SUNFLOWER GROWN UNDER DIFFERENT LEVELS OF INPUT

Coffea arabica var. laurina Authentication Using Near Infrared Spectroscopy

MICROWAVE DIELECTRIC SPECTRA AND THE COMPOSITION OF FOODS: PRINCIPAL COMPONENT ANALYSIS VERSUS ARTIFICIAL NEURAL NETWORKS.

Ripening and Conditioning Fruits for Fresh-cut

CORRELATIONS BETWEEN CUTICLE WAX AND OIL IN AVOCADOS

Bread Crust Thickness Estimation Using L a b Colour System

Application of NIR Analytical Technique in Green Tea s Quality Control

Relation between Grape Wine Quality and Related Physicochemical Indexes

Maximum maturation stage: Factors affecting the post-storage quality of fruits taken from a Fuerte and Hass orchard

MATERIALS AND METHODS

Elderberry Ripeness and Determination of When to Harvest. Patrick Byers, Regional Horticulture Specialist,

Relationships Among Wine Prices, Ratings, Advertising, and Production: Examining a Giffen Good

Composition and Value of Loin Primals

EFFECT OF CURING AND SEAL PACKAGING ON PEEL AND PULP WEIGHT LOSS PERCENTAGE OF SCUFFING DAMAGED AND UNDAMAGED CITRUS FRUIT.

DIRECT CANE FIBER DETERMINATION BY THE PRESS METHOD

FRUIT GROWTH IN THE ORIENTAL PERSIMMON

7. LOCALIZATION OF FRUIT ON THE TREE, BRANCH GIRDLING AND FRUIT THINNING

AVOCADO GENETICS AND BREEDING PRESENT AND FUTURE

Improving Capacity for Crime Repor3ng: Data Quality and Imputa3on Methods Using State Incident- Based Repor3ng System Data

Problem Set #3 Key. Forecasting

HASS CARMEN. Carlos Illsley. Rob Brokaw. Salvador Ochoa. Therese Bruwer A PRECOCIOUS FLOWERING AVOCADO TREE

Bt Corn IRM Compliance in Canada

Characterization of Eleven Late-Maturing Selections of Avocado (Persea americana Mill.)

RMUTP Research Journal Special Issue

EFFECT OF TOMATO GENETIC VARIATION ON LYE PEELING EFFICACY TOMATO SOLUTIONS JIM AND ADAM DICK SUMMARY

MARKET NEWSLETTER No 127 May 2018

Identification of Adulteration or origins of whisky and alcohol with the Electronic Nose

OF THE VARIOUS DECIDUOUS and

Grower Summary TF 170. Plums: To determine the performance of 6 new plum varieties. Annual 2012

OVERSEEDING EASTERN GAMAGRASS WITH COOL-SEASON GRASSES OR GRASS- LEGUME MIXTURES. Abstract

Determining the Optimum Time to Pick Gwen

Determination of Fruit Sampling Location for Quality Measurements in Melon (Cucumis melo L.)

New tools to fine-tune quality harvests : spectroscopy applications in viticulture. Ralph Brown, PhD, PEng CCOVI Associate Fellow

Best Practices for use of SmartFresh on Pear Fruit. Beth Mitcham Department of Plant Sciences University of California Davis

Coffee prices rose slightly in January 2019

Transcription:

Proceedings VII World Avocado Congress 2011 (Actas VII Congreso Mundial del Aguacate 2011). Cairns, Australia. 5 9 September 2011 Non-destructive measurement of moisture content in avocado s using handheld near-infrared spectroscopy Medición no-destructiva de la madurez de aguacates usando un NIR manual RJ Blakey and Z van Rooyen (Westfalia Technological Services) Abstract (English) The non-destructive measurement of maturity in early season avocado fruit is a priority for the South African avocado industry. Thus the measurement of maturity using a handheld near-infrared (NIR) gun was investigated because it offers the opportunity to measure fruit maturity both pre- and postharvest. Fuerte and Hass fruit were harvested from a number of farms from the 2010 and 2011 seasons for maturity testing. For each fruit, each quarter was scanned, in duplicate, around the equator and sampled immediately for moisture content (MC) analysis. Samples were oven dried for 18h at 70 C. The resulting Partial Least Squares regression model had a range of 51-86% moisture content (49-14% dry matter), the correlation between actual and predicted values was 96% and the standard error of prediction (SEP) of the independent test set was 2.8% MC. In a smaller experiment, the skin of fruit was removed prior to scanning to determine the effect of the skin on the SEP as this instrument operates in reflectance. If the skin was removed before scanning, the SEP improved to 2.2% MC. Although the SEP is relatively high, this method compares favourably to the current commercial method of maturity determination, which does not account for the large variation between fruit in the same orchard because samples from different fruit are pooled and only a small sample is taken; the use of handheld NIR will permit the non-destructive measurement of fruit maturity on a large number of fruit and provide a distribution pattern of the maturity of those fruit. Abstract (Spanish) La medición no-destructiva de fruta temprana es una prioridad para la industria aguacatera Sudafricana. Se investigó la medición de madurez utilizando un NIR manual (Phazir1018, Polychromix) que ofrece la opción de medir la madurez de la fruta en pre y post cosecha. Se cosechó fruta de variedad Fuerte y Hass de varios huertos en las temporadas 2010/2011 para pruebas de madurez. Para cada fruto, cada cuarto se escaneó, en duplicado, en el ecuador y fue testeada inmediatamente para un análisis de contenido de humedad. Las muestras se secaron en horno por 18h a 70 C. El resultado de la regresión de Mínimos Cuadrados Parciales tuvo un rango de 51-86% de contenido de humedad (49-14% materia seca), la correlación entre valores reales y predichos fue de 96%. El error estándar de predicción (SEP) del test independiente fue 2.8% MC. En un experimento menor, la piel del fruto se removió antes de escanearla para determinar su efecto en el SEP (este instrumento opera con reflectancia). El SEP mejoró a 2.2% MC. Aunque es relativamente

alto, este método compara favorablemente al método actual de determinación de madurez, el cual no contabiliza la gran variación entre frutos en un mismo huerto, ya que las muestras de distintos frutos se mezclan y sólo se toma una pequeña muestra; el uso de una máquina manual de NIR permitirá una medición no-destructiva de la madurez de la fruta en una gran cantidad de frutos y proveerá un patrón de distribución de la madurez. Keywords: non-destructive, near-infrared, avocados, maturity Introduction Early season South African avocado fruit fetch a premium on the European market, leading to some growers harvesting immature fruit, i.e. fruit that will not reach eating ripeness, resulting in consumer dissatisfaction at the costly poor quality. The current commercial method to measure maturity is unsuitable to large sample sizes because it is destructive and labour intensive; it is also open to manipulation to attain a false minimum maturity. Publications on the use of NIR on avocados are scant but it has been shown to be able to measure dry matter or moisture content (Blakey, Bower and Bertling 2009; Clark, McGlone, Requejo, White and Woolf 2003; Wedding, White, Grauf, Wright, Tilse, Hofman and Gadek 2011) and has potential for use throughout the avocado industry. Handheld NIR can be used as a method for the rapid non-destructive measurement of maturity pre- or postharvest. Handheld NIR has been used to measure the internal quality of a number of different fruit, including: mangoes (Walsh and Subedi, 2010, Subedi, Walsh and Owens, 2007), plums (Pérez- Marín, Paz, Guerrero, Garrido-Varo and Sánchez, 2010), nectarines (Pérez-Marín, Sánchez, Paz, González-Dugo and Soriano, 2011) and grapes (Haibach, 2008). Handheld NIR will enable a larger proportion of the fruit in an orchard to be sampled repeatedly to provide a more representative estimation of fruit maturity. This is important because the maturity of fruit within an orchard - and even a single tree - is highly variable because of asynchronous flowering, fruit position on the tree and differential water relations; the moisture content in an orchard can also have a range of 10% at a given time. The aim of this research was to develop a robust, but accurate model to measure the moisture content of South African Fuerte and Hass fruit across a wide range of avocado maturity. Materials and methods Fruit Fuerte and Hass fruit were obtained from a number of different farms in the Tzaneen and Levubu growing regions (Limpopo Province, South Africa). The range in moisture content was 86 % to 51 % - the equivalent dry matter (DM) values are 14 % and 49 %. Spectrum Collection Reflectance spectra were collected using a Phazir 1018 (Thermo Scientific, Wilmington, MA, USA). Spectra were collected at five or six points around the equator of each fruit in duplicate, rotating

the fruit 90 between duplications. The average of five scans was taken to provide one spectrum. The collection time per spectrum was five seconds. Moisture Content Analysis Samples were taken from each scanned area using a 15 mm cork borer. The skin was removed and approximately 1 g of mesocarp used to determine the moisture content. Samples were oven-dried (70 C) for approximately 18 h. Approximately 20,000 samples were used in the model generation. To determine the internal variation within a sample, a 2 g mesocarp core was vertically divided into two pieces and the MC of each segment determined. A pooled sample of 10 fruit is currently recommended for the determination of fruit maturity in South Africa. The fresh mass (approximately 10 g) and dry mass of 10 fruit were used to determine the average MC. Chemometric Analysis The chemometric analysis was done using Polychromix Method Generator TM version 3.101 (Wilmington, MA, USA). The sample set was randomly and equally divided between the calibration and external validation set. A Savitzky-Golay (SG) derivative and a Standard Normal Variate (SNV) transformation were the most suitable pre-processing treatments. The SG derivative was a five point smoothing with a second order derivative with a third order polynomial smoothing. Spectra with a Mahalanobis distance greater than 3.0 were deemed as outliers and removed from the data set. Results and Discussion Model for Moisture Content of Whole Fruit The partial least squares (PLS) model was developed using seven principal components. The model had an excellent correlation (R 2 = 0.96) across the range of 51-86 % moisture but the standard error of calibration (SEC) and prediction (SEP) were higher than preferable (Table 1), but the error from the oven drying method is incorporated into the SEC and SEP. The standard deviation in a MC sample divided into two pieces was 0.4 % MC. The results were comparable to published results for the measurement of avocado DM or MC using reflectance NIR (Clark et al, 2003, Blakey et al, 2009). When diffuse reflectance NIR was used (greater penetration depth of the light into the fruit), the SEP was 1.53 % DM (Wedding et al, 2011). Table 1: Statistics of calibration and external validation sets of the model to measure moisture content of whole avocado fruit using a Phazir1018. Statistic Calibration Validation Range 51.1-85.3% 50.9-85.9% Correlation 0.96 0.96 Standard Error 2.78 2.80

Effect of Skin on Accuracy A smaller experiment was conducted to ascertain the effect of the skin on the accuracy of readings, because the Phazir1018 operates with a reflectance data collection method, meaning the NIR light has a limited penetration depth (approximately 5 mm) into the fruit. The removal of the skin and scanning the mesocarp directly reduced the SEP to 2.2 % MC; this was also noticed by Wedding et al (2011). This method is destructive and cannot be used for tracking fruit maturity pre-harvest, but does offer reduced analysis time compared to oven or microwave drying methods. Maturity in a Commercial Orchard The weekly average maturity and percentage of mature fruit of 20 fruit from an outside grower s orchard in Levubu (an early maturing region in South Africa) illustrate the shortcomings of using an average maturity method (Figure 1). Average moisture content declined from 84.5 % to 79.9 % during the six week period while the percentage of mature fruit increased from zero to 55%. The orchard was strip-picked on the 9 th of March, when the average maturity was below the legal maturity level of 80 % MC. Moisture Content (% fresh mass) 85 84 Avg MC 83 % Mature 82 81 80 79 78 77 24-Jan 31-Jan 7-Feb 14-Feb 21-Feb 28-Feb 7-Mar 100 90 80 70 60 50 40 30 20 10 0 Mature Fruit (%) Figure 1: Average moisture content readings (left-hand Y-axis) and the percentage of legally mature fruit (right-hand Y-axis) from a Fuerte orchard in an early maturing avocado region of South Africa taken during a six week period in 2011. Legal maturity is set at 80% MC or 20% DM. Discussion A major disadvantage of using a pooled sample for maturity determination, as is commercially done, is that one is only provided with an average, without any indication of the distribution of the fruit

maturity. As was the case of a commercial orchard in the 2011 season (Figure 1), a misleading, but legal, maturity value can result in the fruit being harvested before many of the fruit are mature. In this orchard, only 55% of the sampled fruit were mature two days before harvest. The large proportion of immature fruit harvested and sold to consumers would have resulted in consumer dissatisfaction and would also have negatively affected later sales in the market. It is acknowledged that there is a financial incentive to harvest fruit as early as possible, but the orchard could be non-destructively sampled using handheld and the harvest delayed until all the fruit are mature to ensure ripeness and improve eating quality. Convection or microwave oven drying methods are far cheaper than NIR, but the number of samples that can be analysed is limited and far from representative of the orchard average. As food prices are increasing, and consumers are becoming more discerning, growers and agri-processors need to move towards precision agriculture, necessitating the use of technology like NIR. For avocados, handheld NIR can be used to ascertain the fruit maturity non-destructively pre-harvest to provide a representative sample of the orchard maturity without any fruit loss and thus greatly reduce the risk of harvesting immature fruit. Handheld NIR can also be used in conjunction with online NIR in the packhouse and ripening facility. The technology is costly, but it can be managed by a growers association or co-operative to optimally utilise the expensive equipment. Conclusion Handheld NIR can be used for the rapid non-destructive estimation of moisture content or dry matter of avocados across a wide range of fruit maturity. This can be used to take a more representative sample for fruit maturity to reduce the risk of harvesting immature fruit. Further testing will continue to improve the accuracy of the estimated values of avocado MC, as an indication of maturity. Acknowledgements The financial support from the Hans Merensky Foundation, Westfalia Fruit Estates and SAAGA is gratefully acknowledged. Thanks are extended to Shirley Mathelemuse, Therese Bruwer and Stephanie Roberts. Grateful thanks to Amana, Bridelia, Bavaria Fruit Estates, Ledzee Estates, Westfalia Fruit Estates and Wolkberg for the donation of fruit. Literature Cited Blakey, RJ, Bower, JP & Bertling, I 2009. Influence of water and ABA supply on the ripening pattern of avocado (Persea americana Mill.) fruit and the prediction of water content using near infrared spectroscopy. Postharvest Biology and Technology, vol. 53, pp. 72-76. Clark, CJ, McGlone, VA, Requejo, C, White, A & Woolf, AB 2003. Dry matter determination in 'Hass' avocado by NIR spectroscopy. Postharvest Biology and Technology, vol. 29, pp. 300-307.

Haibach, FG 2008. Rapid, non-destructive determination of Brix on whole grapes on-cluster. Polychromix Inc. Pérez-Marín, D, Paz, P, Guerrero, J-E, Garrido-Varo, A & Sánchez, M-T 2010. Miniature handheld NIR sensor for the on-site non-destructive assessment of post-harvest quality and refrigerated storage behavior in plums. Journal of Food Engineering, vol. 99, pp. 294-302. Pérez-Marín, D, Sánchez, M-T, Paz, P, González-Dugo, V & Soriano, M-A 2011. Postharvest shelf-life discrimination of nectarines produced under different irrigation strategies using NIRspectroscopy. LWT - Food Science and Technology, vol. In Press, Accepted Manuscript, pp. DOI: 10.1016/j.lwt.2011.01.008. Subedi, PP, Walsh, KB & Owens, G 2007. Prediction of mango eating quality at harvest using shortwave near infrared spectrometry. Postharvest Biology and Technology, vol. 43, pp. 326-334. Walsh, KB & Subedi, PP. Year. Using near infrared spectroscopy in precision horticulture. In: 28th International Horticultural Congress, 2010 Lisbon, Portugal. Wedding, BB, White, RD, Grauf, S, Wright, C, Tilse, B, Hofman, P & Gadek, PA 2011. Non-destructive prediction of Hass avocado dry matter via FT-NIR spectroscopy. Journal of the Science of Food and Agriculture, vol. 91, pp. 233-238.