Post-harvest avocado physiology

Similar documents
Avocado sugars key to postharvest shelf life?

Low temperature shipping and cold chain management of Fuerte avocados: An opportunity to reduce shipping costs

Ultra-low temperature shipping and cold chain management of Hass avocados: Investigation into reducing shipping costs

EVALUATION OF NEW HASS -LIKE AVOCADO CULTIVARS IN SOUTH AFRICA

THE EFFECT OF ETHYLENE UPON RIPENING AND RESPIRATORY RATE OF AVOCADO FRUIT

Towards Improved Maturity Standards for Fuerte Avocado Fruit in the Cool Subtropical Kwazulu-Natal Midlands

What Went Wrong with Export Avocado Physiology during the 1996 Season?

Temperature Regimes for Avocados Grown In Kwazulu-Natal

The Role of Ethylene in Browning of Avocado Pulp during cold storage

Factors to consider when ripening avocado

MATURITY AND RIPENING PROCESS MATURITY

Lecture 4. Factors affecting ripening can be physiological, physical, or biotic. Fruit maturity. Temperature.

NEW ZEALAND AVOCADO FRUIT QUALITY: THE IMPACT OF STORAGE TEMPERATURE AND MATURITY

Proceedings of The World Avocado Congress III, 1995 pp

Post-Harvest Vapour Heat Treatment of Hass and Fuerte Avocado

INCREASING PICK TO PACK TIMES INCREASES RIPE ROTS IN 'HASS' AVOCADOS.

Post-Harvest Vapour Heat Treatment of Hass and Fuerte Avocado for the 1997 Season

UNIVERSITY OF CALIFORNIA AVOCADO CULTIVARS LAMB HASS AND GEM MATURITY AND FRUIT QUALITY RESULTS FROM NEW ZEALAND EVALUATION TRIALS

Limitations to avocado postharvest handling. Factors to consider when ripening avocado

A storage temperature regime for South African export avocados

Further refinement of Pinkerton export parameters

ETHYLENE RIPENING PROTOCOLS FOR LOCAL AND EXPORT MARKET AVOCADOS

Further investigations into the rind lesion problems experienced with the Pinkerton cultivar

Best Practices for use of SmartFresh on Pear Fruit. Beth Mitcham Department of Plant Sciences University of California Davis

Ripening, Respiration, and Ethylene Production of 'Hass' Avocado Fruits at 20 to 40 C 1

Response of 'Hass' Avocado to Postharvest Storage in Controlled Atmosphere Conditions

Hot water treatment of avocado fruit to induce cold tolerance

1-Methyl cyclopropene (1-MCP): An alternative for controlled atmosphere storage of South African export avocados

Melon Quality & Ripening

Studies in the Postharvest Handling of California Avocados

SYMPTOMS OF CONTROLLED ATMOSPHERE DAMAGE IN AVOCADOS

Hass Seasonality. Avocado Postharvest Handling. Avocado Postharvest Handling. Mary Lu Arpaia University of California, Riverside

PRESERVATION OF FRUITS AND VEGETABLES BY REDUCTION OF ETHYLENE GAS

THE INFLUENCE OF MODIFIED ATMOSPHERE STORAGE ON THE QUALITY OF FUERTE AVOCADO FRUIT

Using Natural Lipids to Accelerate Ripening and Uniform Color Development and Promote Shelf Life of Cranberries

Instructor: Stephen L. Love Aberdeen R & E Center 1693 S 2700 W Aberdeen, ID Phone: Fax:

Ripening Tomatoes. Marita Cantwell Dept. Plant Sciences, UC Davis

D Lemmer and FJ Kruger

Chilling Sensitivity of Avocado Fruit at Different Stages of the Respiratory Climacteric 1

ROLE OF WATER LOSS IN RIPENING OF HASS AVOCADOS

Application & Method. doughlab. Torque. 10 min. Time. Dough Rheometer with Variable Temperature & Mixing Energy. Standard Method: AACCI

Relationship between Fruit Color (ripening) and Shelf Life of Cranberries: Physiological and Anatomical Explanation

FRUIT GROWTH IN THE ORIENTAL PERSIMMON

Application Note: Analysis of Melamine in Milk (updated: 04/17/09) Product: DPX-CX (1 ml or 5 ml) Page 1 of 5 INTRODUCTION

Relationship between Mineral Nutrition and Postharvest Fruit Disorders of 'Fuerte' Avocados

Ripening and Conditioning Fruits for Fresh-cut

Weight, g Respiration, µl/g-h Firmness, kg/cm

Ready2Eat Avocado Development of improved ripening protocols Ernst Woltering Wageningen-UR Food & Biobased Research

MODE OF ACTION OF WATER LOSS ON FRUIT QUALITY OF HASS AVOCADOS

IS RIPENING AND POST HARVEST QUALITY OF HASS AVOCADOS AFFECTED BY FRUIT WATER STATUS?

Using Growing Degree Hours Accumulated Thirty Days after Bloom to Help Growers Predict Difficult Fruit Sizing Years

Temperature management of avocados an integrated approach

EFFECT OF CURING AND SEAL PACKAGING ON PEEL AND PULP WEIGHT LOSS PERCENTAGE OF SCUFFING DAMAGED AND UNDAMAGED CITRUS FRUIT.

Vibration Damage to Kiwifruits during Road Transportation

LEKARGA Keepfresh sheets

Takao IcHli and Kenichi HAMADA Faculty of Agriculture, Kobe University, Kobe and Agricultural Experiment Station of Hyogo Prefecture, Sumoto

18 PHOTOSYNTHESIS AND CARBOHYDRATE PARTITIONING IN CRANBERRY

COMPARISON OF CORE AND PEEL SAMPLING METHODS FOR DRY MATTER MEASUREMENT IN HASS AVOCADO FRUIT

DEVELOPMENT OF A RAPID METHOD FOR THE ASSESSMENT OF PHENOLIC MATURITY IN BURGUNDY PINOT NOIR

TEMPERATURE CONDITIONS AND TOLERANCE OF AVOCADO FRUIT TISSUE

Hass Seasonality. Postharvest Diseases. California Avocado Cultivars. Mary Lu Arpaia University of California, Riverside

THE INFLUENCE OF WET PICKING ON POST HARVEST DISEASES AND DISORDERS OF AVOCADO FRUIT

STEM-END ROTS : INFECTION OF RIPENING FRUIT

EFFECTS OF HIGH TEMPERATURE AND CONTROLLED FRUITING ON COTTON YIELD

The Post-harvest Management of Apples, from Hot Water Treatment to Decision Support System.

Project Title: Testing biomarker-based tools for scald risk assessment during storage. PI: David Rudell Co-PI (2): James Mattheis

Mary Lu Arpaia University of California, Riverside

Determination of Caffeine in Coffee Products According to DIN 20481

Olives Postharvest Quality Maintenance Guidelines. Carlos H. Crisosto and Adel A. Kader Pomology Department University of California Davis, CA 95616

The important points to note are: Firmometer value. Days after treatment

A new approach to understand and control bitter pit in apple

Comparison of Two Commercial Modified Atmosphere Box-liners for Sweet Cherries.

Gluten Index. Application & Method. Measure Gluten Quantity and Quality

bag handling Poor technology High Technology Bulk handling mechanized

Utilization of Modified Atmosphere Packaging to Increase Shelf Life

GROWTH RATES OF RIPE ROT FUNGI AT DIFFERENT TEMPERATURES

BEEF Effect of processing conditions on nutrient disappearance of cold-pressed and hexane-extracted camelina and carinata meals in vitro 1

Identification of Adulteration or origins of whisky and alcohol with the Electronic Nose

Regression Models for Saffron Yields in Iran

Effects of Different Transportation Methods on Quality of Sweet Cherry After Forced-air Cooling

Tomato Quality Attributes

Buying Filberts On a Sample Basis

Physiological gradients in fleshy pericarp of avocado

Rapid Analysis of Soft Drinks Using the ACQUITY UPLC H-Class System with the Waters Beverage Analysis Kit

POSTHARVEST SPECIALISTS postharvest.ucdavis.edu

RESOLUTION OIV-OENO ANALYSIS OF VOLATILE COMPOUNDS IN WINES BY GAS CHROMATOGRAPHY

Fruit Set, Growth and Development

Non-Structural Carbohydrates in Forage Cultivars Troy Downing Oregon State University

Sensory Quality Measurements

Determining the Optimum Time to Pick Gwen

Media Feedback 2015 Category Quantification Report White Milk in South Africa

QUALITY, PRICING AND THE PERFORMANCE OF THE WHEAT INDUSTRY IN SOUTH AFRICA

Production, Optimization and Characterization of Wine from Pineapple (Ananas comosus Linn.)

The efficacy of combined application of edible coating and moringa extract in enhancing fruit quality in avocado (Persea americana Mill)

Harvesting Stonefruit

Ripening Temperature Management. Why Ripen? Why Temperature Management is Important for Fruits

Unit F: Harvesting Fruits and Nuts. Lesson 2: Grade, Pack, Store and Transport Fruits and Nuts

Use of Plant Growth Regulators to Increase Fruit Set, Fruit Size and Yield and to Manipulate Vegetative and Floral Shoot Growth

Temperature effect on pollen germination/tube growth in apple pistils

Extraction of Acrylamide from Coffee Using ISOLUTE. SLE+ Prior to LC-MS/MS Analysis

Transcription:

Post-harvest avocado physiology RJ Blakey, JP Bower and I Bertling Horticultural Science, School of Agricultural Sciences and Agribusiness University of KwaZulu-Natal, Pietermaritzburg Private Bag X01, Scottsville 3209, South Africa E-mail: robblakey@gmail.com; bowerj@ukzn.ac.za ABSTRACT A three year study considered the effects of production location, maturity, storage temperature, modified atmosphere (MA) storage and a cold chain break on avocado ripening physiology. The aim of this study was to better understand post-harvest avocado physiology to enable improved post-harvest management to maintain fruit quality longer. Focus was placed on sugars, ripening enzymes, respiration, ethylene production and water relations. The seven carbon sugars, mannoheptulose and perseitol, were confirmed as the predominant sugars and possible energy source of avocado fruit. The six carbon sugars glucose, fructose and sucrose were not present in sufficient quantities nor do their trends suggest that they are used as an energy source. The seven carbon sugars are present in low concentrations in the mesocarp and need to be preserved during cold storage to enable proper ripening. The activity of three enzymes (cellulase, polygalacturonase and pectin methylesterase) was measured during ripening. The activity of these ripening enzymes is essential for softening and palatability. Polygalacturonase (PG) was not affected by different storage treatments although increased because of storage but cellulase activity was highly dependent. Fruit that were not stored in MA storage had a higher cellulase activity post-storage and fruit stored at 1 C had a slightly higher activity. The activity of pectin methylesterase (PME) was initially higher in fruit that were not stored in MA bags, but PME showed only slight variations post-storage. The 1 C and MA storage both reduced the respiration rate, ethylene production rate, mass loss, water loss and heptose consumption. The MA storage also reduced protein synthesis and external chilling injury. These two treatments together were found to be an effective means of maintaining fruit quality. These treatments negated the symptoms of long-term cold storage: the reduced storage temperature reduced the respiration rate and the MA storage reduced desiccation, but had a minimal effect of the ripening rate. A cold chain break, at any time during cold storage, increased mannoheptulose usage and water loss, and caused a spike in respiration and ethylene production. A cold chain break also increased shrivelling, greatly reducing fruit quality. Water content of fruit was measured using near infrared spectroscopy (NIRS). The model was validated in 2009 after two years of model development. It was found that the model was more accurate for fruit from KwaZulu-Natal, probably due to less time loss between harvesting and measurement than fruit from other areas. INTRODUCTION The avocado (Persea americana Mill.) is a fruit crop with physiology which does not always appear to follow that of other fruit. The popularity of the avocado fruit has grown during the last fifty years and the fruit is produced extensively in a broad range of climatic zones, including semi-desert, temperate, subtropical and tropical. Avocados are also an important export crop in most of the countries of production. The cold storage of avocados has brought about many challenges for horticultural scientists. Unfortunately for the consumer, there are still many unsolved problems. These problems can only be solved once the avocado physiology is properly understood. Progress in understanding avocado physiology has been slow because of its highly variable nature and high concentrations of oil and phenols, requiring large datasets and complicated assays. Research resources are also divided into pathology, agronomy, cultivar development and postharvest technology, further slowing advances in postharvest management. The South African avocado industry is export driven. However, export also results in high costs of shipping and handling. Profits can be increased substantially with optimised management of the fruit. Management decisions need to have a physiological basis, because fruit quality is imperative for maintaining and growing market share. Two low-cost post-harvest techniques were implemented in this study: 1 C storage and modified atmosphere (MA) storage. The MA was achieved by enclosing fruit in micro-perforated polypropylene bags (polybags). Avocados are climacteric fruit, generating large amounts of carbon dioxide and ethylene during ripening. The texture of fruit changes substantially during ripening. These changes are brought about by the 56

action of cell wall degrading enzymes on the cellulose, hemicellulose and pectin of the cell wall. These metabolic changes require an energy source and this area of avocado physiology is not sufficiently understood. The importance of water relations on fruit quality has been known for decades. Near-infrared spectroscopy now allows for improved studies on fruit water relations because the water concentration of fruit can be measured non-destructively. These factors were all studied to provide a better understanding of ripening physiology. The aim of this study was to better understand post-harvest avocado physiology to enable better postharvest management and enhance post shipment shelf life. MATERIALS AND METHODS Fruit, treatments, sampling and statistical analysis Count 16 (236-265 g) fruit (cv Hass) were sourced from Tzaneen and Howick. Fruit from Tzaneen reached the laboratory within two days of picking, after refri gerated transport. Fruit from Howick were picked and immediately transported to the laboratory in Pietermaritzburg. Fruit were stored for 28 days at either 1.0 C or 5.5 C (±0.5 C). Four fruit per treatment were heat-sealed in a 30 μm thick polypropylene bag with 9 μm perforations and an anti-mist coating (Polylam Packaging, Johannesburg) before being placed in cold storage. Fruit tissue sampling was done by removing a core with a 15 mm diameter cork borer and immediately freezing in liquid nitrogen, the tissue lyophilised, and stored at -20 C until later analysis. The volume of fruit removed by this method was sealed with petroleum jelly, thus allowing the fruit to continue being used for ripening evaluation. A factorial design was used, with ten fruit as replications per treatment combination. ANOVA was performed using Genstat v12 (VSN International, Hemel Hempstead, UK). Respiration rate Carbon dioxide production was measured using an EGM-1 environmental gas monitor (PP Systems, Hitchin, Hertfordshire, UK). Fruit were incubated in a 1 L container for 15 min. The headspace CO 2 concentration (ppm) was converted to respiration rate, taking into account fruit mass and volume, free space in the jar and the ambient CO 2 concentration (Van Rooyen, 2006). Ethylene production rate The ethylene production rate was measured using a DANI 1000 gas chromatograph (DANI Instruments, Monzese, Italy). A 20 ml glass autosampler vial and individual fruit were placed in a sealed 1 L jar for 30 min, thereafter the autosampler vial was sealed and transferred to the autosampler (HT250D, HTA s.r.l, Brescia, Italy). The GC was fitted with a flame ionisation detector, stainless steel column packed with an alumina-f1 stationary phase, and instrument-grade nitrogen as the mobile phase. The injector, column and detector temperatures were 160, 80, and 180 C, respectively. Results were corrected for fruit mass and volume. Firmness Fruit were deemed ripe when the average reading on a hand-held 5 mm round tip densimeter (Bareiss, Oberdischingen, Germany) was less than 60 (Köhne et al., 1998). Sugar concentration Sugar content and concentrations were determined by HPLC, based on the method of Liu et al. (1999). The elution was isocratic, using ultrapure water as the mobile phase. Individual sugars were identified by comparing retention times of standards. Sugar concentration is expressed as mg sugar per g dry mass (mg g -1 ). Enzyme activity Protein extraction was based on the method of Kanellis and Kalaitzis (1992). Protein quantification was done using the Bradford micro-assay (Bradford, 1976) and a calibration curve using bovine serum albumin applied. Oil concentration Oil concentration was measured using the method of Meyer and Terry (2008). Near-infrared spectroscopy Fruit were scanned before and after storage using a Foss NIRS 6500 spectrometer (Foss NIR Systems, Silver Spring, USA). To calculate water loss during storage, the water content of individual fruit was quantified using the method of Blakey et al. (2009). Figure 1. Sugars and protein concentration in the mesocarp of unstored fruit during ripening. RESULTS AND DISCUSSION Figure 1 shows the trends of the individual sugars and total protein in the mesocarp of unstored fruit during ripening. Mannoheptulose and protein declined rapidly during the first week and then remained fairly constant at 1-2 mg g -1 DM. Sucrose declined slightly during the first three days and thereafter remained at about 3 mg g -1 DM. Glucose and fructose were present in very low concentrations at harvest but increased slightly during ripening to reach approximately 2 and 1 mg g -1 DM, respectively. Total protein increased from about 15 mg 57

g -1 DM, reaching a peak of 33 mg g -1 DM at 11 days post-harvest and then declined to 30 mg g -1 DM. Glucose is unlikely to be the major stored energy source of avocados because the concentration increases during ripening. If glucose was the stored energy source it would decline, considerably. This trend is observed in the heptose sugars mannoheptulose and perseitol, implying that these sugars are the predominant energy sources in avocado (Liu et al., 1999). These fruit have previously been linked to fruit quality (Bertling & Bower, 2005). Mannoheptulose also functions as the major anti-oxidant in the mesocarp (Tesfay, 2009), thus maintaining the concentration of these sugars is critical for fruit quality. The effects of the storage treatments are illustrated in Figure 2. The 1 C and MA storage both reduced the respiration rate, ethylene production rate, mass loss, water loss and heptose consumption. The MA storage also reduced protein synthesis and external chilling injury. These two treatments together appear to be an effective means of maintaining fruit quality. The combination of these treatments negated the symptoms of long term cold storage: the reduced storage temperature reduced the respiration rate and the MA storage reduced desiccation (and thereby external chilling injury), but had a minimal effect on the ripening rate, only prolonging ripening by one to three days. Fructose and glucose both increased during storage, this being most evident in the conventionally stored fruit (5.5 C and unwrapped). Sucrose declined during storage, but there was no significant difference between treatments. The combination of 1 C and MA storage consistently resulted in the best quality fruit. This treatment needs to be compared to that of using 1-MCP. While this treatment does not address the effects of post-harvest stress, it does block ethylene reception which could be expected to alter the ripening physiology. Previous work by Pesis et al. (2002) indicated that the presence of ethylene during storage does adversely affect fruit quality. Enzyme activity generally increased rapidly after cold storage, implying some activity during storage and explaining why stored fruit ripen faster than unstored fruit. To prevent softening during storage, the activity of cellulase and PG needs to be minimised, because these enzymes break down the cell wall PME prepares pectin for hydrolysis by PG. This is best achieved by the 1 C, MA storage treatment combination. Fruit stored at this treatment regime had no significant increase in cellulase activity (Figure 3A) after removal from storage. There was no significant difference between the treatments, with regards to polygalacturonase activity, although the maximum activity was higher in stored fruit. PME activity was generally constant within the MA stored fruit but fluctuated greatly in the unwrapped fruit. The activity in fruit stored at 5.5 C increased, while in those stored at the lower temperature the activity declined considerably. There was no significant difference between the two storage temperatures with regards to cellulase activity, but there was between unwrapped and wrapped fruit (Figure 4). Unwrapped fruit had a higher activity immediately after storage, which was sustained throughout ripening, until ripeness. The wrapped fruit had no significant difference to the unstored fruit immediately after cold storage, but had a significantly higher activity during ripening compared to the unstored fruit. The trends for oil concentration from each harvest Figure 2. A range of parameters measured after harvest and after storage at 1.0 or 5.5 C and wrapped in polybags or not. *Mano: mannoheptulose ECI: External chilling injury Table 1. Difference (percentage) between predicted and actual water content for Hass and green skin cultivars, and local and transported fruit. 'Hass' Green skin Local Transported Predicted-actual 1.79 1.47 0.87 2.72 58

are similar and thus the results in Figure 5 are combined from six harvests. The oil concentration of unstored fruit increased exponentially from 32% DM to 41% DM, but only increased slightly during the first week (Figure 5). This may be because of improved extraction efficiency or a relative increase as the cell wall is hydrolysed. The storage treatments resulted in aberrant trends but the MA storage had similar trends to the unwrapped fruit having a higher terminal concentration compared to the wrapped fruit. The near-infrared spectroscopy model developed in 2007 and 2008 to measure water content, was validated in 2009. It was found that fruit that was measured on the day of harvest had the most accurate results. This has logistical implications if this technology is to be implemented commercially. There did not seem to be a difference between Hass and green skin culti- vars, although 90% of the fruit used in the model were Hass (Table 1). The instrument operated in reflection mode, so the penetration depth of the NIR was only a few millimetres and affected by the exocarp. A transmission or interactance data collection method would be more suitable for fruit (Blakey et al., 2008). This will be attempted in the 2010 season on a semicommercial basis. In conclusion, cold storage conditions need to: i) mini mise the consumption of heptose sugars, ii) mini mise protein synthesis, especially the enzyme cellulase, and iii) minimise water loss which will lead to stress and increased ethylene synthesis. Utilising cost effective cold storage regimes to achieve these objectives will increase fruit quality and profitability of the avocado industry. For Hass fruit, storage at 1ºC would appear to achieve these objectives. However, a direct comparison between the 1ºC protocol in conjunction with MA storage and the presently commercially used 1-MCP would be useful. Practical options of using polypropylene wrapping need to be found before this can Figure 4. Cellulase activity of unstored fruit, fruit wrapped in polybags and fruit not wrapped in polybags. Figure 3. The activity of cellulase (A), polygalacturonase (B) and pectin methylesterase (C) for fruit stored for 28 days at 1.0 or 5.5 C and wrapped in polybags or not, during ripening. Figure 5. Oil concentration of unstored fruit, fruit wrapped in polybags and fruit not wrapped in polybags. 59

60 be used commercially. This could be carton wraps similar to table grapes or a pallet wrap. ACKNOWLEDGMENTS This project would not have been possible without assistance from many fronts. Thanks are extended to the Hans Merensky Foundation and SAAGA for financial assistance; Westfalia Technological Services for fruit, especially Dr Zelda van Rooyen; Mrs Kathleen Blakey for her assistance in the laboratory and the numerous KZN farmers for their provision of fruit for the validation of the NIR model. Grateful thanks to Molipa Mosoeunyane and Dr Samson Tesfay for sharing their laboratory expertise. LITERATURE CITED BERTLING, I. & BOWER, J.P. 2005. Sugars as energy sources - is there a link to avocado fruit quality. South African Avocado Growers Association Yearbook, 28: 24-27. BLAKEY, R.J., BOWER, J.P. & BERTLING, I. 2008. The potential of near-infrared spectroscopy in the avocado industry. South African Avocado Growers Association Yearbook, 31: 47-50. BLAKEY, R.J., BOWER, J.P. & BERTLING, I. 2009. Influence of water and ABA supply on the ripening pattern of avocado (Persea americana Mill.) fruit and the prediction of water content using Near Infrared Spectroscopy. Postharvest Biol. Technol., 53: 72-76. BRADFORD, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem., 72: 248-254. KANELLIS, A.K. & KALAITZIS, P. 1992. Cellulase occurs in multiple active forms in ripe avocado fruit mesocarp. Plant Physiol., 98: 530-534. KÖHNE, J.S., KREMER-KÖHNE, S. & GAY, S.H. 1998. Non- Destructive Avocado Fruit Firmness Measurement. South African Avocado Growers Association Yearbook, 21: 19-21. LIU, X., ROBINSON, P.W., MADORE, M.A., WITNEY, G.W. & ARPAIA, M.L. 1999. Hass avocado carbohydrate fluctuations. II. Fruit growth and ripening. J. Am. Soc. Hort Sci., 124: 676-681. MEYER, M.D. & TERRY, L.A. 2008. Development of a Rapid Method for the Sequential Extraction and Subsequent Quantification of Fatty Acids and Sugars from Avocado Mesocarp Tissue. J. Agric. Food. Chem., 56: 7439-7445. PESIS, E., ACKERMAN, M., BEN-ARIE, R., FEYGENBERG, O., FENG, X., APELBAUM, A., GOREN, R. & PRUSKY, D. 2002. Ethylene involvement in chilling injury symptoms of avocado during cold storage. Postharvest Biol. Technol., 24: 171-181. TESFAY, S.Z. 2009. Special carbohydrates of avocado - Their function as sources of energy and anti-oxidants. Horticultural Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa. VAN ROOYEN, Z. 2006. Factors affecting mesocarp discolouration severity in Pinkerton avocados: Chapter 2: Effects of storage temperature, harvest date and fruit origin on the post-harvest physiology and internal quality of Pinkerton avocado (Persea americana Mill.). Horticultural Science, University of KwaZulu-Natal, Pietermaritzburg.