DYNAMICS AND SAMPLING OF MIRIDS (HEMIPTERA: MIRIDAE) IN AVOCADO IN FLORIDA

Similar documents
FLOWERING BEHAVIORS OF TAIWAN AVOCADO CULTIVARS

NEW ZEALAND AVOCADO FRUIT QUALITY: THE IMPACT OF STORAGE TEMPERATURE AND MATURITY

IMPACT OF RAINFALL PRIOR TO HARVEST ON RIPE FRUIT QUALITY OF HASS AVOCADOS IN NEW ZEALAND

INFESTATION PATTERN OF Scirtothrips dorsalis Hood (THYSANOPTERA : THRIPIDAE) IN DEVELOPING SHOOT AND FLOWER OF MANGO ARUMANIS 143

Spotted wing drosophila in southeastern berry crops

Progress Report Submitted Feb 10, 2013 Second Quarterly Report

Discovery of the sugarcane thrips, Fulmekiola serrata, in sugarcane fields in Southern Florida

Flowering and Fruiting Morphology of Hardy Kiwifruit, Actinidia arguta

Lygus: Various Species Monitoring Protocol

PS Schoeman and FA Botha

EFFECT OF CULTURAL MANIPULATION OF "MUMMY" WALNUTS ON WINTER SURVIVAL OF NAVEL ORANGEWORM

Managing Navel Orangeworm (NOW) in Walnuts. Kathy Kelley Anderson Farm Advisor Stanislaus County

New Serious Pest of Lychee and Longan Trees Found in Florida

(36) PROHEXADIONE-CALCIUM AFFECTS SHOOT GROWTH AND YIELD OF LEMON, ORANGE AND AVOCADO DIFFERENTLY

Vineyard IPM Scouting Report for week of 26 July 2010 UW-Extension Door County and Peninsular Agricultural Research Station Sturgeon Bay, WI

MONITORING WALNUT TWIG BEETLE ACTIVITY IN THE SOUTHERN SAN JOAQUIN VALLEY: OCTOBER 2011-OCTOBER 2012

SUMMER AVOCADO VARIETIES

Relationship between Mineral Nutrition and Postharvest Fruit Disorders of 'Fuerte' Avocados

MANAGING INSECT PESTS IN BERRIES AND FRUITS. Small Farm School 8 September 2012 Bruce Nelson, CCC Horticulture Department

Materials and Methods

Effects of Seedling Age, and Different Levels of N, K and K/N on Quality and Yield of Tomato Grown in Perlite Bag Culture

EVALUATION OF NEW HASS -LIKE AVOCADO CULTIVARS IN SOUTH AFRICA

D Lemmer and FJ Kruger

THOUSAND CANKERS DISEASE AND WALNUT TWIG BEETLE IN A THREE YEAR OLD ORCHARD, SOLANO COUNTY

Citrus flower moth. Prays citri (Millière) PEST FACT SHEET

What Went Wrong with Export Avocado Physiology during the 1996 Season?

Studies in the Postharvest Handling of California Avocados

2005 Research: Monitoring, Sanitation, and Insect Pest Management in Figs

Quadrilateral vs bilateral VSP An alternative option to maintain yield?

Progress Report on Avocado Breeding

PERFORMANCE OF HYBRID AND SYNTHETIC VARIETIES OF SUNFLOWER GROWN UNDER DIFFERENT LEVELS OF INPUT

Volume XL Issue 1, March 31, General Situation

Avocado sugars key to postharvest shelf life?

APPENDIX Thirty Trees Sampling Method for CBB Monitoring

Michigan Grape & Wine Industry Council 2012 Research Report. Understanding foliar pest interactions for sustainable vine management

VEGETATIVE FLUSHING AND FLOWERING OF MACADAMIA INTEGRIFOLIA IN HAWAII

Influence of GA 3 Sizing Sprays on Ruby Seedless

Effects of Preharvest Sprays of Maleic Hydrazide on Sugar Beets

THE ROLE OF TWO INSECTICIDES IN CONTROLLING INSECT PESTS OF AVOCADOS

THE EFFECT OF ETHYLENE UPON RIPENING AND RESPIRATORY RATE OF AVOCADO FRUIT

Fátima Gonçalves, Cristina Carlos, Susana Sousa, Márcio Nóbrega, José C. Franco, José Manso, António Pinto, Laura Torres

Status of Halyomorpha halys in the Mid-Atlantic U.S. Tom Kuhar Professor and Vegetable Entomology Specialist Department of Entomology, Virginia Tech

New Research on Navel Orangeworm Management

EFFECT OF HARVEST TIMING ON YIELD AND QUALITY OF SMALL GRAIN FORAGE. Carol Collar, Steve Wright, Peter Robinson and Dan Putnam 1 ABSTRACT

Marvin Butler, Rhonda Simmons, and Ralph Berry. Abstract. Introduction

GRAIN SORGHUM. Tifton, Georgia: Early-Planted Grain Sorghum Hybrid Performance, 2012 Nonirrigated. 2-Year Average Yield

Further investigations into the rind lesion problems experienced with the Pinkerton cultivar

Managing potato leafhopper in wine grapes

Biology and phenology of scale insects in a cool temperate region of Australia

THE EFFECT OF GIRDLING ON FRUIT QUALITY, PHENOLOGY AND MINERAL ANALYSIS OF THE AVOCADO TREE

2009 SUNFLOWER INSECT PEST PROBLEMS AND INSECTICIDE UPDATE

PS Schoeman SOUTH AFRICAN AVOCADO GROWERS ASSOCIATION YEARBOOK 37, 2014

FALL TO WINTER CRANBERRY PLANT HARDINESS

The Benefits of Insecticide Use: Avocados

Quadrilateral vs bilateral VSP An alternative option to maintain yield?

DRAFT. Though once considered virtually. Large bugs damage pistachio nuts most severely during midseason

The Economic Impact of Bird Damage to Select Fruit Crops in New York

The Incidence of Greening and Canker Infection in Florida Citrus Groves from September 2007 through August

Some Common Insect Enemies

UNIVERSITY OF CALIFORNIA AVOCADO CULTIVARS LAMB HASS AND GEM MATURITY AND FRUIT QUALITY RESULTS FROM NEW ZEALAND EVALUATION TRIALS

Percentage Fruit Set In Avocados (Persea Americana Mill.)

STRAWBERRY FRUIT DAMAGED BY THE TARNISHED PLANT BUG (Lygus rugulipennis L.)

Plant Population Effects on the Performance of Natto Soybean Varieties 2008 Hans Kandel, Greg Endres, Blaine Schatz, Burton Johnson, and DK Lee

COMPARISON OF CORE AND PEEL SAMPLING METHODS FOR DRY MATTER MEASUREMENT IN HASS AVOCADO FRUIT

2012 BUD SURVIVAL SURVEY IN NIAGARA & ESSEX AREA VINEYARDS

Non-Structural Carbohydrates in Forage Cultivars Troy Downing Oregon State University

Colorado State University Viticulture and Enology. Grapevine Cold Hardiness

RHAGOLETIS CERASI (L.) IN WESTERN SICILY: PRESENCE, DAMAGES AND CONTROL IN ORGANIC CHERRY ORCHARDS

Harvesting Charges for Florida Citrus, 2016/17

November 9, 2016 December 9, 2016 Florida FCOJ Yield 1.48 Gallons per Box

Corn Earworm Management in Sweet Corn. Rick Foster Department of Entomology Purdue University

Sonoran Bumble Bee. Phenophase Definitions. Activity. Reproduction. Development. (Bombus sonorus)

THE THREAT: The disease leads to dieback in shoots and fruiting buds and an overall decline in walnut tree health.

PHENOLOGY OF THE NEW ZEALAND FLOWER THRIPS (THRIPS OBSCURATUS) IN TWO VINEYARDS

THE EVALUATION OF WALNUT VARIETIES FOR CALIFORNIA S CENTRAL COAST REGION 2007 HARVEST

Almond & Walnut Harvest Evaluation: Identifying Sources of Damage

Prepared by Louise Ferguson, Mark Bell, Mark Henderson

Phytophagous stink bugs (Hemiptera: Pentatomidae; Coreidae) associated with macadamia in South Africa

OVERSEEDING EASTERN GAMAGRASS WITH COOL-SEASON GRASSES OR GRASS- LEGUME MIXTURES. Abstract

Using Growing Degree Hours Accumulated Thirty Days after Bloom to Help Growers Predict Difficult Fruit Sizing Years

Sweet corn insect management by insecticides in Ohio, 2015 Final report 12/31/2015

Results of New Cultivar Selection Trials for Orange in Arizona

ALBINISM AND ABNORMAL DEVELOPMENT OF AVOCADO SEEDLINGS 1

Walnut Blight Control Investigations 2004 (Xanthomonas campestris pv juglandis)

Use of Plant Growth Regulators to Increase Fruit Set, Fruit Size and Yield and to Manipulate Vegetative and Floral Shoot Growth

sites for disease entry, in particular citrus canker. ACP is an even more recent arrival in Florida

Phenology of the strawberry blossom weevil and damage in strawberries Andrea Krauß 1, Christiane Steen 2 and C.P.W. Zebitz 1

Relative efficacy of some insecticides for the control of tea mosquito bug, Helopeltis theivora (Waterhouse) in Bangladesh

BIO-EFFICACY OF NEWER INSECTICIDES AGAINST POD BORER COMPLEX OF PIGEONPEA [Cajanus cajan (L.) Millspaugh] *PATEL, S. A. AND PATEL, R. K.

Vineyard IPM Scouting Report for week of 12 July 2010 UW-Extension Door County and Peninsular Agricultural Research Station Sturgeon Bay, WI

Angel Rebollar-Alvitar and Michael A. Ellis The Ohio State University/OARDC Department of Plant Pathology 1680 Madison Avenue Wooster, OH 44691

FLOWERING OF TOMATO IN RELATION TO PRE-PLANTING LOW TEMPERATURES

PGR Strategies to Increase Yield of Hass Avocado

Mealybug Species. Vine Mealybug. Grape and Obscure Mealybugs. Longtailed Mealybug. Pink Hibiscus Mealybug. Gills Mealybug

Title: Western New York Sweet Corn Pheromone Trap Network Survey

Risk Assessment of Grape Berry Moth and Guidelines for Management of the Eastern Grape Leafhopper

Determining the Optimum Time to Pick Gwen

Temperature effect on pollen germination/tube growth in apple pistils

V. Deltoro, C. Torres, MA Gómez-Serrano, P. Pérez, J. Jiménez

2012 Estimated Acres Producers Estimated Production Units Estimated Farm Value Farm Crawfish 182,167 1,251 90,973,725 Lbs.

Transcription:

Proceedings V World Avocado Congress (Actas V Congreso Mundial del Aguacate) 2003. pp. 495-501. DYNAMICS AND SAMPLING OF MIRIDS (HEMIPTERA: MIRIDAE) IN AVOCADO IN FLORIDA J. E. Peña, H. Glenn and R. M. Baranowski Tropical Research and Education Center, UF, Homestead, Florida, USA E-Mail: jepe@mail.ifas.ufl.edu SUMMARY Flower feeders, such as mirids Dagbertus fasciatus (Reuter), Rhinacloa sp. and D. olivaceous (Reuter) contribute to excessive flower drop and reduction of fruit set in Florida. Several studies on the dynamics and sampling of these pests were conducted in South Dade County by collecting mirids from thirteen avocado varieties. The effectiveness of a beating sampling technique was compared to the use of sticky traps as monitoring tools. Relationship between avocado flower variety and avocado phenology was determined. Key Words: mirids, flower pests, avocado, Dagbertus, Rhinacloa INTRODUCTION Mirids are injurious and widespread insect pests of avocado and cause diverse damage in some producer areas. For instance, in Africa, the avocado bug, Taylorilygus sp., appears to feed on avocado flowers, young fruit and presumably also young fruits (Wysoki et al., 2002). Damage to avocado fruit is caused within the first few weeks after fruit set. This leads to the development of protrusions on larger fruit which are only visible about a month after feeding. The lesions that occur on avocado fruit are in the form of pimply elevations on the fruit surface (Du Toit et al., 1993). If surveys indicate that large populations of the avocado bug are present shortly after fruit set, chemical control should be applied immediately (Van den Berg et al., 1999). In the Philippines, the mirid bugs Helopeltis bakeri Pop., and H. collaris Donovan attack the shoots and fruit of avocados, causing significant damage (Cendaña et al., 1984). During the late 70s in Florida, USA, populations of mirids began to appear annually on avocado blossoms in numbers great enough to cause concern. Preliminary surveys conducted by the two junior authors showed the following mirids to be associated at least occasionally, with avocado 495

V Congreso Mundial del Aguacate blossoms: Polymerus cruentatus, Taylorilygus apiacalis, Lygus lineolaris, Neurocolpus flavescens, Rhinacloa sp., Dagbertus fasciatus and D. olivaceous. Later, Baranowski and Glenn (unpubl.) observed that the only species feeding and breeding on avocado were Dagbertus fasciatus Reuter and D. olivaceous (Reuter). Dagbertus adults were also collected from mango, longan, lychee, black olive, Schinus terenbinthifolius, Parthenium sp. and sabal palmetto (Baranowski and Glenn, unpublished). Attacks to avocado seem to especially affect flowers and recently set fruit, causing them to drop. These insects are green-brown, comparatively small at 1 cm in length. Dagbertus eggs held at 23 C hatch in 6-8 d, nymphs go through 5 stages before reaching the adult stage. Thus, Dagbertus can complete a single generation in as short a time as 14 d (Glenn and Baranowski, unpubl.). The objectives of the present study were to determine the relationship between Daghbertus fasciatus, D. olivaceous, Rhinacloa sp. and avocado varieties and to determine the seasonal abundance of these species. MATERIALS AND METHODS Three trees representing each of thirteen avocado cultivars, Choquete, Black Prince, Nadir, Booth 8, Booth 7, Nesbitt, Hardee, KL, Streamliner, Pollock, Fuchs, and Waldin were selected from the germplasm collection at the Tropical Research and Education Center, Homestead, Florida. Floral buds of each cultivar were sampled by shaking floral clusters in a modified sweep net method at different times of the day. The modified sweep net method consisted in beating 1 panicle 4-5 times into a 36 x 26 cm plastic tray. Adults and nymphs were recorded. Adults were identified to the species level by the second and third authors. Sampling was conducted from January, 24, 1985 through April 25, 1985. Sampling was also conducted during 1987 on 13 cultivars, Pollock, Brookslate, Nadir, Monroe, Simmonds, Booth 7, Nesbitt, Waldin, Tower, Tonnage, Choquette, Black Prince, and Taylor. Developmental stages of avocado inflorescence were determined by following the descriptions of Davenport (1982). Mirids were also trapped by placing 21.3 cm in diam. white circular sticky traps at 1 and 2 m high on the external tree canopy. The effectiveness of this type of trapping was determined and compared with the modified sweep net method. Pimply elevations were evaluated by visually inspecting 10 randomly collected fruits per tree. Pimpling was expressed as percent of fruit with more than 1 pimple per fruit. RESULTS AND DISCUSSION Relationships between avocado varieties and mirids. During our first sampling period, Daghbertus olivaceous were more abundant (P> 0.05) on cultivars Booth 8 and Booth 7 compared with other cultivars (Table 1). Adults of D. fasciatus were more commonly found on Booth 8, Booth 7, and Waldin. The cultivars with the highest D. fasciatus, D. olivaceous densities, and with nymphs of both species, were Booth 8 and Booth 7 followed by Fuchs, Black Prince, KL and Waldin. The lowest mirid densities were found in Pollock, Streamliner and Nesbitt (Table 1). During our second sampling period, mirids were more abundant on Pollock and Brooks late compared to Nadir, Taylor, Monroe, Booth 7, Choquette, Waldin, Simonds, Black Prince and Tonnage (Table 2). Therefore, it is uncertain that D. olivaceous and D. fasciatus showed constant preference for the cultivars evaluated during this study. A relationship between the average number of mirids and percentage of fruit pimpling was not observed (F = 0.01; Pr > 0.94; df = 38) (Table 3). 496

Plagas Relationship between mirid density and flower phenology. During the first study, more mirids were found (F = 5.12; df = 532; P<0.0001) (Table 4) on flower buds with a maximum floral opening (grade 9) than on any other developmental stage. During the second study, more mirids (F = 5.18; df = 531; P <0.01) were found on those flowers with a flower development higher that 7.5.There was not a significant difference between the number of mirids found on male or female avocado flowers (F = 0.07; df = 552; P < 0.78). Mirid densities and weather. There was a statistical difference between the total number of mirids captured and the weather conditions (sunny, cloudy or overcast). More mirids were collected from flowers surveyed under cloudy conditions than during sunny or overcast conditions (F = 3.30; df = 551; P < 0.04) (Table 5). No statistical differences were detected between sampling time and number of mirids captured on the flowers. However, the lowest percentage of mirids was collected between 10 and 1230 hours and a higher percentage between the 9 h or at 1330 hr (Fig 1). Mirid Seasonality. Depending on the variety [early flowering, vs. late flowering], mirids were captured as early as January. Numbers peaked between the end of March and through mid April. The total number of mirids decreased afterwards (Fig 2). The cultivars KL and Streamliner showed earlier mirid populations in January, followed by Nadir, Nesbitt, Black Prince (mid March) and the late cultivars ( Booth 8, Booth 1, Hardee, Fuchs, and Booth 7) showed mirid population build up by late March. Mirid densities were observed as late as April on the cultivars Waldin and Choquette. Trapping. Sticky traps detected 56% of the mirid population as compared to the swep-net method. Therefore, the sweep method trapped 4 times more mirids than the sticky traps. The use of sticky traps, however, has the advantage to provide an estimation of mirid density using less man-hours than the sweep net method. More mirids were detected in traps when the flower development was higher than 7. During the second study no significant relationship was found between the number of mirids found per panicle and number of mirids collected in traps (Fig 3). CONCLUSIONS The species, Dagbertus fasciatus Reuter and D. olivaceous (Reuter) were collected infesting avocado panicles during this study. A definitive varietal preference by the mirids was not observed. Flowers with a grade development between 7.5 and 9 which correspond to open flowers, held the highest number of Dagbertus sp. Therefore, a population build up in avocado accompanies and probably directly depends on flower development from January to April. Moreover, Dagbertus mirids are highly poliphagous infesting besides avocado, flowers of Mangifera indica, Parthenium sp., Schinus terebinthifolius, and other species. A correlation between pimpling on fruits and average mirid density was not observed. Previously, Peña and Denmark (1996) suggested that feeding of Tegolophus perseaflorae (Acari: Eriophyidae) may cause fruit deformation and decoloration. Further research is needed to elucidate this problem as other pests, i.e., Frankliniella sp. can also feed on avocado flowers. Monitoring in orchards allows a better timing of sprays and an estimation of the population densities of pests involved. Sticky traps may be useful for detecting the presence of mirids in avocado and for monitoring incoming adults from other plant species moving into the avocado orchard. 497

V Congreso Mundial del Aguacate Table 1. Abundance of Daghbertus olivaceous and D. fasciatus adults and nymphs of both species, on 13 avocado cultivars, 1985 Cultivar D. olivaceous D. fasciatus Nymphs Numbers followed by different letters were significantly different by Duncan s multiple range test (P<0.05) Total Choquette 0.14b 0.08c 0.04c 0.26b Black Prince 0.28b 0.10c 0.58bc 0.96b Nadir 0.14b 0.00c 0.10c 0.25b Booth 8 0.65a 0.48a 1.70a 2.83a Booth 7 0.65a 0.42ab 1.18ab 2.25a Booth 1 0.11b 0.06c 0.46bc 0.64b Nesbitt 0.10b 0.03c 0.10c 0.23b Hardee 0.15b 0.07c 0.03c 0.27b KL 0.06b 0.00c 0.73bc 0.80b Streamliner 0.14b 0.02c 0.05c 0.22b Pollock 0.06b 0.10c 0.02c 0.19b Fuchs 0.06b 0.10c 0.82bc 0.96b Waldin 0.19b 0.20bc 0.33bc 0.72b Table 2. Abundance of Daghbertus olivaceous and D. fasciatus adults and nymphs of both species, on 13 avocado cultivars, 1987 Cultivar Adults Nymphs Total Pollock 0.86a 0.21bc 1.07ab Brooks late 0.57ab 1.15a 1.72a Nadir 0.39b 0.41bc 0.79bc Monroe 0.31b 0.33bc 0.64bc Simmonds 0.29b 0.14bc 0.43bc Booth 7 0.26b 0.42bc 0.68bc Nesbitt 0.20b 0.08c 0.28bc Waldin 0.17b 0.64b 0.81bc Tower 0.15b 0.23bc 0.38bc Tonnage 0.15b 0.49bc 0.64bc Choquette 0.13b 0.15bc 0.28bc Black Prince 0.10b 0.10c 0.20c Taylor 0.08b 0.08c 0.16c Numbers within a column followed by a different letter were significantly different by Duncan s multiple range test (P<0.05). 498

Plagas Table 3. Relationship between average number of mirids and percent avocado fruits with pimpling on an avocado grove, May 1985, Homestead, FL Cultivar Undamaged Percent Fruit Damaged Mirids Choquette 56 43 0.26 Black Prince 31 77 0.96 Nadir 4 96 0.26 Booth 8 20 79 2.83 Booth 7 25 75 2.25 Booth 1 41 59 0.64 Nesbitt 17 83 0.23 Hardee 19 81 0.27 KL 8 92 0.80 Streamliner 14 86 0.22 Pollock 17 83 0.19 Fuchs 17 83 0.96 Waldin 3 96 0.72 Table 4. Abundance of D. olivaceous and D. fasciatus on different phenological states of avocado flowers. Bud Development D. olivaceous D. fasciatus Nymphs Total 0-7 0.01 0.01 0.22b 0.25b 0.5-5 0.00 0.00 0.00b 0.00b 5.5 0.08 0.04 0.04b 0.17b 6.0 0.00 0.00 0.00 0.00 6.5 0.00 0.00 0.00 0.00 7 0.15 0.05 0.73b 0.94b 7.5 0.10 0.00 0.10b 0.21b 8 0.21 0.14 0.17b 0.53b 8.5 0.41 0.08 0.08b 0.58b 9 0.65 0.34 0.81b 1.81b 9.5 0.80 0.68 3.37a 4.85a 10 0.29 0.27 0.73b 1.30b Numbers within a column followed by a different letter were significantly different by Duncan s multiple range test (P<0.05). Table 5. Average number of mirids collected during sunny, over cast and cloudy conditions. Weather Condition Sunny Overcast Cloudy Average Mirids per flower 0.67 b 1.33 a 0.00 b Numbers within a column followed by a different letter were significantly different by Duncan s multiple range test (P<0.05). 499

V Congreso Mundial del Aguacate Figure Captions 80 Mean No. Mirids/Panicle 60 40 20 0 D. olivaceous D. fasciatus Nymphs both sp. January February March April Sampling Dates Fig 1. Percentage of flowers with more than 1 avocado mirid, collected from panicles between 8 am and 4 pm in Homestead, Florida, USA. 60 Percent Flowers with > 1 Mirid 50 40 30 20 10 0 AM PM 8 9 10 11 12 13 14 15 16 Sampling Time Fig 2. Mean number of Dagebrtus sp., and nymphs collected from January through April, in avocado, Homestead, Florida, USA. 500

Plagas 160 140 Sticky Trap Sweep net Total Number Mirids 120 100 80 60 40 20 0 March April Sampling Dates Fig 3. Total number of mirids trapped and/or collected from avocado floral panicles in Homestead, Florida, USA. REFERENCES CENDAÑA, S. M., GABRIEL, B.P., AND MAGAALLONA, E.D. 1984. Insect pests of fruit crops in the Phillippines. Department of Entomology, University of the Phillippines, Los Baños. DAVENPORT, T. L. 1982. AVOCADO GROWTH AND DEVELOPMENT. PROC. FLORIDA STATE HORT. SOC. 95: 92-96. DU TOIT, W.J., STEYN, W.P., AND DE BEER, M.S. 1993. Occurrence of protrusions on avocado fruit and the causative agent. South African Avocado Growers Association Yearbook 16: 100-102. PEÑA, J. E., AND H. DENMARK. 1996. An eriophyid Tegolophus perseaflorae (Acari: Eriophyidae) new to Florida and the USA. Florida Entomologist 79: 74-76 VAN DEN BERG, M.A. DE VILLIERS, E.A., AND JOUBERT, P.H. 1999. Identification manual for avocado pests. Dynamic Ad, Nelspruit, 53 pp. WYSOKI, M., VAN DEN BERG, M., ISH-AM, G., GAZIT, S., PEÑA, J. E., AND WAITE,G. 2002. Pests and pollinators of Avocado. In: J. E. Peña, J. Sharp and M. Wyzoki, eds. Tropical fruit pests and pollinators. CAB International, Wallingford, UK. 430 p. 501