STUDY AND IMPROVEMENT FOR SLICE SMOOTHNESS IN SLICING MACHINE OF LOTUS ROOT

Similar documents
Structural optimal design of grape rain shed

Thermal Hydraulic Analysis of 49-2 Swimming Pool Reactor with a. Passive Siphon Breaker

Parameters Effecting on Head Brown Rice Recovery and Energy Consumption of Rubber Roll and Stone Disk Dehusking

Vibration Damage to Kiwifruits during Road Transportation

Comparison of the OTAKE and SATAKE Rice Mills Performance on Milled Rice Quality

6.7 Lighting maintenance

Performance Analysis of Impeller and Rubber Roll Husker Using Different. Varieties of Rice

International Trade CHAPTER 3: THE CLASSICAL WORL OF DAVID RICARDO AND COMPARATIVE ADVANTAGE

Optimization Model of Oil-Volume Marking with Tilted Oil Tank

Processing Conditions on Performance of Manually Operated Tomato Slicer

The Market Potential for Exporting Bottled Wine to Mainland China (PRC)

Dust Introduction Test to determine ULPA Filter Loading Characteristics in Class II Biosafety Cabinets

Jetinno,a science and technology company concentrating on innovating, manufacturing and providing service for commercial coffee equipment.

LINEAR GUIDES. Aluminum Roller Guides

Product Consistency Comparison Study: Continuous Mixing & Batch Mixing

ANALYSIS OF THE EVOLUTION AND DISTRIBUTION OF MAIZE CULTIVATED AREA AND PRODUCTION IN ROMANIA

Activity 10. Coffee Break. Introduction. Equipment Required. Collecting the Data

The Dumpling Revolution

Supporing Information. Modelling the Atomic Arrangement of Amorphous 2D Silica: Analysis

The Development of the Pan-Pearl River Delta Region and the Interaction Between the Region and Taiwan

A New Approach for Smoothing Soil Grain Size Curve Determined by Hydrometer

White Paper. Dry Ingredient Chilling for Bakery Manufacturers.

Module 6: Overview of bakery machinery: mixers, forming machines and ovens.

DESIGN AND EXPERIMENT OF VIBRATION SEPARATION EQUIPMENT FOR WINE GRAPE

SIGMA The results count

The dissociation of a substance in hot water can be well described by the diffusion equation:

Lauren Paradiso, Ciara Seaver, Jiehao Xie

JUICE EXTRACTION AND FILTRATION JUICE EXTRACTION METHOD AND EQUIPMENT

Chapter 1: The Ricardo Model

Fig.1 Diagram of vacuum cooling system [7-8]

PINEAPPLE LEAF FIBRE EXTRACTIONS: COMPARISON BETWEEN PALF M1 AND HAND SCRAPPING

SIGMA It s the result that counts

THE ROMANIAN EXTERNAL TRADE IN SUGAR AND CONFECTIONERY PRODUCTS

The aim of the thesis is to determine the economic efficiency of production factors utilization in S.C. AGROINDUSTRIALA BUCIUM S.A.

EDSGN 100 Project 1 Dumpling Roller Mark I

ANALYSIS ON THE STRUCTURE OF HONEY PRODUCTION AND TRADE IN THE WORLD

A Research on Traditionally Avilable Sugarcane Crushers

Innovations for a better world. Ingredient Handling For bakeries and other food processing facilities

Forward Sealing Beer Faucets

Solid free-form fabrication in fired ceramic as a design aid for concept modelling in the ceramic industry

INTRODUCTION TO CUSTOM FABRICATED STRAINERS

Distillation Note Books

Department of Mechanical Engineering, Federal University of Agriculture, Abeokuta, NIGERIA 3

Smart Plunger TM by PCS

Emerging Local Food Systems in the Caribbean and Southern USA July 6, 2014

DESIGN AND CONSTRUCTION OF A YAM POUNDING MACHINE

Regression Models for Saffron Yields in Iran

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP ( 1

Model GPX Precision Disc Style Coffee Grinder

Environmental Monitoring for Optimized Production in Wineries

COALHO CHEESE. Food and Agriculture Organization of the United Nations

Figure 1. Honey Production in Indonesia from

Midterm Economics 181 International Trade Fall 2005

BOKELA BACKFLUSH FILTER

EXTRACTION OF PINEAPPLE LEAF FIBRE: JOSAPINE AND MORIS

SMALLHOLDER TEA FARMING AND VALUE CHAIN DEVELOPMENT IN CHINA

Acidity and ph Analysis

Research Article Research on Design Method of Intelligent Vending Machine for Cupped Beverage

Menes - LAMINATING LINE

Bearing Produced by IAR Team Focus Technology Co., Ltd.

SIMPLEX STRAINER MODEL 90

CFD Analysis to Calculate the Optimal Air Velocity in Drying Green Tea Process Using Fluidized Bed Dryer

Application & Method. doughlab. Torque. 10 min. Time. Dough Rheometer with Variable Temperature & Mixing Energy. Standard Method: AACCI

Specialised in Depositors & Sprinkling units

Elemental Analysis of Yixing Tea Pots by Laser Excited Atomic. Fluorescence of Desorbed Plumes (PLEAF) Bruno Y. Cai * and N.H. Cheung Dec.

Flexible gear grinding machines

STEAM TUBES OVENS RANGE

Assignment # 1: Answer key

on a regular basis. However, peanut butter while having many positive health benefits

Dough Dispensing Device for Earth Elements Market and Bakery December 4, 2009

Feeling Hungry. How many cookies were on the plate before anyone started feeling hungry? Feeling Hungry. 1 of 10

Monthly Economic Letter

Update on Wheat vs. Gluten-Free Bread Properties

BAKING SCIENCE AND TECHNOLOGY

WE GRANTED YOUR FIRST WISH: THE BEST QUALITY IN A TOUCH

Design of Conical Strainer and Analysis Using FEA

FIRST MIDTERM EXAM. Economics 452 International Trade Theory and Policy Spring 2011

The delicate art of wine making. Alfa Laval Foodec decanter centrifuges in the wine industry

F&N 453 Project Written Report. TITLE: Effect of wheat germ substituted for 10%, 20%, and 30% of all purpose flour by

TURBOMIXERS AND PREMIXERS. VERTIMIX TURBOMIXER GTM SERIES TURBOMIXER GTM TANK-LESS SERIES TURBOMIXER GMG SERIES PREMIXER PCG SERIES

Relation between Grape Wine Quality and Related Physicochemical Indexes

One class classification based authentication of peanut oils by fatty

Range RS-BTs. Rev

STATE OF THE VITIVINICULTURE WORLD MARKET

KAHL Pelleting Presses. for Compound Feed, Dried Forage, Dried Beet Pulp, Straw, and Other Reproducible Raw Materials

STUDY REGARDING THE RATIONALE OF COFFEE CONSUMPTION ACCORDING TO GENDER AND AGE GROUPS

Baker Perkins Inc 3223 Kraft Ave SE Grand Rapids, MI USA. Baker Perkins Ltd Manor Drive Paston Parkway Peterborough PE4 7AP United Kingdom

IMPACT OF RAINFALL AND TEMPERATURE ON TEA PRODUCTION IN UNDIVIDED SIVASAGAR DISTRICT

ICSBOC The 7 th International Cable Supported Bridge Operators' Conference May 18-20, 2010 Zhenjiang, China

Study on Correlation Between Coating Rate and Hot Water Soluble Substances of Reconstituted Tobacco

1/17/manufacturing-jobs-used-to-pay-really-well-notanymore-e/

LaSanMarco MADE IN ITALY

OPERATING MANUAL. Sample PRO 100 Series. Electric Heating. Applies to Versions: SPE1*, SPE2, SPE4, SPE6

Acta Chimica and Pharmaceutica Indica

COMPARISON OF CORE AND PEEL SAMPLING METHODS FOR DRY MATTER MEASUREMENT IN HASS AVOCADO FRUIT

MARKET NEWSLETTER No 127 May 2018

FACTORS DETERMINING UNITED STATES IMPORTS OF COFFEE

The basic ingredient. We know how.

CHARACTERISTlCS AND QUALITY OF THE FREEZE-DRIED INDONESIAN TRADITIONAL HERB MEDICINE

The structure and its change of soybean food industry in Japan

Transcription:

STUDY AND IMPROVEMENT FOR SLICE SMOOTHNESS IN SLICING MACHINE OF LOTUS ROOT Deyong Yang 1,*, Jianping Hu 1,Enzhu Wei 1, Hengqun Lei 2, Xiangci Kong 2 1 Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education & Jiangsu Province, Jiangsu University, Zhenjiang, Jiangsu Province, P. R. China 212013 2 Jinhu Agricultural Mechanization Technology Extension Station, Jinhu county, Jiangsu Province, P. R. China 211600 * Corresponding author, Address: Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education & Jiangsu Province, Jiangsu University, Zhenjiang, Jiangsu Province, P. R. China 212013, Tel: +86-511-8, Fax: +86-511-8, Email: yangdy@163.com Abstract: Concerning the problem of the low cutting quality and the bevel edge in the piece of lotus root, the reason was analyzed and the method of improvement was to reduce the force in the vertical direction of link to knife. 3D parts and assemblies of cutting mechanism in slicing machine of lotus root were created under Pro/E circumstance. Based on virtual prototype technology, the kinematics and dynamics analysis of cutting mechanism was simulated with ADAMS software, the best slice of time that is 0.2s~0.3s was obtained, and the curve of the force in the vertical direction of link to knife was obtained. The vertical force of knife was changed accordingly with the change of the offset distance of crank. Optimization results of the offset distance of crank showed the vertical force in slice time almost is zero when the offset distance of crank is -80mm. Tests show that relative error of thickness of slicing is less than 10% after improved design, which is able to fully meet the technical requirements. Keywords: lotus root, cutting mechanism, smoothness, optimization 1. INTRODUCTION China is a country of producing lotus root, lotus root system of semifinished products of domestic consumption and external demand for exports

2 Deyong Yang, Jianping Hu,Enzhu Wei, Hengqun Lei, Xiangci Kong is relatively large. In order to improve efficiency, reduce labor intensity, the group work, drawing on the principle of the artificial slice based on the design and development of a new type of lotus root slicer (Bi Wei and Hu Jianping, 2006). This new type of slicer solved easily broken cutting, stick knives, hard to clean up and other issues, but the process appears less smooth cutting, and some have a problem of hypotenuse piece of root. In this paper, analyzing cutting through the course of slice knife, the reasons causing hypotenuse was found, and the corresponding improvement of methods was proposed and was verified by the experiments. 2. STRUCTURE OF CUTTING MECHANISM OF SLICING MACHINE Cutting mechanism of slice lotus root is the core of the machine, the performance of its direct impact on the quality of slice. Virtual prototyping of cutting mechanism of slice lotus root (Fig.1)was built by using Pro/E, and mechanism diagram of the body is shown in Fig.2. Cutting principle of lotus slicer adopted in the cardiac type of slider-crank mechanism was to add materials inside, which can be stacked several lotus root, lotus root to rely on the upper part of the self and the lower part of the lotus press down so that it arrives in the material under the surface of the baffle. While slidercrank mechanism was driven by motor, the knife installed on the slider cut lotus root. In the slice-cutting process it was found that parallelism of the surface at both ends of part of piece lotus was not enough, which can not meet the technical requirements for processing. Fig.1 Virtual prototyping of cutting mechanism

Study and improvement for slice smoothness in slicing machine of lotus root 3 lotus root knife lotus guide Fig.2 Diagram of cutting mechanism 3. THE CAUSE OF THE BEVEL EDGE Uneven thickness and bevel edge of cutting were related with forces on the slice knife in the process of cutting. In accordance with cutting mechanism ( Fig.2), without taking into account the friction and weight, the direction of force F of point C was along the link. Force F may be decomposed with a horizontal direction force component and a vertical direction force component. The horizontal force component pushed the knife moving for cutting, but the vertical force component caused the knife moving along the vertical direction. Because of the gap between the slider and the rail, the vertical force component made the blade deforming during the movement, and the knife could not move along the horizontal direction to cut lotus root, which caused the emergence of bevel edge. Thus, to reduce or eliminate the vertical force component in the cutting-chip was key to solve the problem of bevel edge and improve the quality of cutting. When Crank speed was 60 ~ 90r/min, the horizontal and vertical direction of the force curve of point C connecting link and the blade hinge are shown in Fig.3 and Fig.4 respectively. As can be seen from the chart, with the crank speed improvement the horizontal and vertical direction of the force in point C also increased. The horizontal force changed relatively stable during 0s ~ 0.2s, which was conducive to cutting lotus, but the vertical force increased gradually. The more the vertical force was, the more detrimental to the quality cutting.

4 Deyong Yang, Jianping Hu,Enzhu Wei, Hengqun Lei, Xiangci Kong Fig.3 Horizontal force of C Fig.4 Vertical force of C 4. SIMULATION AND OPTIMIZATION If improving flatness of the slicer, the structure was optimized to reduce the vertical force component, so as far as possible the level of cutting blade. When crank speed was 60 ~ 90r/min the velocity curve and acceleration curve of the knife center of mass are shown in Fig.5 and Fig.6 respectively. According to the speed curve, the speed of the knife center of mass was relatively large in a period of 0.2s ~ 0.3s.In accordance with the requirements that the knife should have a higher speed during cutting lotus, so this period time was more advantageous to cutting than other terms. According to acceleration curve, when calculates by one cycle, the acceleration value was relatively quite small in the period of time,0.15s~0.3s compared with other time section, which indicated that the change of velocity was relatively small, simultaneously the force of inertia was small, and the influence of vibration caused by the force was small to the slicer. Therefore, this period of time, 0.2s~0.3s, to cut lotus root piece was advantageous in enhances the cutting quality of lotus root piece.

Study and improvement for slice smoothness in slicing machine of lotus root 5 Fig.5 Velocity curve of center of mass of knife Fig.6 Acceleration curve of center of mass of knife Based on the above analysis, the vertical force component between link and the knife was the main reason for bevel edge. According to the characteristics of slider-crank mechanism, reducing the vertical force on the knife in the period of cutting time by altering crank offset was tried to enhance the quality of the cutting. When crank speed was 60r/min, the crank eccentricity was optimized. When the offset of the crank was 40 mm, 20 mm, 0 mm, -20 mm, -40 mm, -60 mm, -80 mm, -120 mm respectively, the mechanism was simulated and the vertical force curves under different crank eccentricity were obtained, as shown in Fig 7. Fig.7 Vertical force in different offset

6 Deyong Yang, Jianping Hu,Enzhu Wei, Hengqun Lei, Xiangci Kong Fig.7 indicates that: When the eccentricity was positive, the vertical force on point C increased gradually in 0.2s ~ 0.3s with the increase of crank offset; When the eccentricity was negative, the force decreased gradually first and then begun to increase along with the increase of crank offset. The force was almost zero when the eccentricity was -80 mm. So when the offset was -80 mm, the numerical of the force in 0.2s ~ 0.3s achieved the minimum and the quality of cutting was the best. When the crank rotated in the other speed, there were the same optimization results. Fig.8 shows the curve of vertical force in the offset of 0 mm and -80 mm when the speed of crank was 80r/min. From the Fig 8 it is obvious that the vertical direction of the force of point C in 0.2 ~ 0.3s reduced a lot when the eccentricity is -80 mm. Therefore, the vertical force could be reduced by optimizing the slider-crank mechanism of eccentricity. Offset= 0mm Offset= -80mm Fig.8 Vertical force of C 5. EXPERIMENTAL ANALYSIS The relative error of thickness of lotus root piece reflects the quality of cutting, which is generally controlled of 10%. There always existed bevel edge phenomenon and the relative error of thickness was about 15% before structural optimization and improvement, which was difficult to meet the technical requirements. The offset in the slider-crank mechanism was optimized, and its structure was improved according to the results of optimization. After improvement cutting test were done in the conditions of crank speed for 80 ~ 110r/min and statistical data about the relative error of thickness was shown in Table.1. Four levels were separated in the experiment, three times for each level.

Study and improvement for slice smoothness in slicing machine of lotus root 7 Table.1 Relative error of thickness of slicing Crank speed ( r/min) NO 80 90 100 110 1 6.6% 6.4% 8.2% 9.5% 2 5.3% 6.1% 8.5% 9.2% 3 6.4% 7.9% 7.9% 9.4% Average 6.1% 6.8% 8.2% 9.4% It is derived from Table.1 that the relative error of the thickness of slices could meet the technical indicators when the crank speed was 80 ~ 110r/min, especially in the crank rotation speed 80r/min, 90r/min the relative error of thickness was less than 7%,and high quality was achieved 6. CONCLUSION The vertical force component acted on the knife in the process of cutting was the main reason for surface formation and bevel edge, so the key of improving the quality was to reduce the vertical force. Through slice knife velocity and acceleration simulation analysis the best time for slicing,0.2s ~ 0.3s, was obtained. By optimizing the offset of the crank the vertical force during cutting time was greatly reduced when the offset was -80mm. Experiments were made after improving the design of lotus root slicer, which results showed that by changing the offset of the crank, the relative error of thickness could fully meet the requirements of less than 10%. So the problem was basically solved that the flatness was not ideal and there was the issue of bevel edge. ACKNOWLEDGEMENTS This work was financially supported by Agricultural Mechanization in three agriculture projects, Jiangsu Province (NJ2007-17) and Tackling Key Problems of Science and Technology of Taizhou City(BE2008385).

8 Deyong Yang, Jianping Hu,Enzhu Wei, Hengqun Lei, Xiangci Kong REFERENCES Bi Wei, Hu Jianping. Study of Lotus Roots Slicing Techniques and Design of New Model. Journal of Agricultural Mechanization Research,2006(12):112~114. (in Chinese) Wei Enzhu. The Simulation and Optimization on the new slicing machine of lotus root Based on Virtual Prototype Technology, Jiangsu University,2008(in Chinese) Zhang Ce. Mechanical Dynamics, Higher Education Press, 1999 Chen Xiuning. Optimal Design of Machinery. Zhejiang University Press, 1999 Chen Liping, Zhang Yunqing, Ren Weiqun. Dynamic Analysis of Mechanical Systems and Application Guide ADAMS, Tsinghua University Press, 2005