Investigation into the Thin Layer Drying Models of Nigerian Popcorn Varieties

Similar documents
Estimation of Energy Requirements for Air Drying of Fresh and Blanched Pumpkin, Yams, and Sweet Potato Slices.

EFFECT OF TOMATO GENETIC VARIATION ON LYE PEELING EFFICACY TOMATO SOLUTIONS JIM AND ADAM DICK SUMMARY

Regression Models for Saffron Yields in Iran

Determination of suitable drying curve model for bread moisture loss during baking

The effect of air flow rate on single-layer drying characteristics of Arabica coffee

Thin layer drying characteristics of fresh tea leaves **

Processing Conditions on Performance of Manually Operated Tomato Slicer

DEVELOPMENT OF MILK AND CEREAL BASED EXTRUDED PRODUCTS

Performance Analysis of Impeller and Rubber Roll Husker Using Different. Varieties of Rice

MATERIALS AND METHODS

Buying Filberts On a Sample Basis

INFLUENCE OF ENVIRONMENT - Wine evaporation from barrels By Richard M. Blazer, Enologist Sterling Vineyards Calistoga, CA

NEW ZEALAND AVOCADO FRUIT QUALITY: THE IMPACT OF STORAGE TEMPERATURE AND MATURITY

Parameters Effecting on Head Brown Rice Recovery and Energy Consumption of Rubber Roll and Stone Disk Dehusking

RELATIVE EFFICIENCY OF ESTIMATES BASED ON PERCENTAGES OF MISSINGNESS USING THREE IMPUTATION NUMBERS IN MULTIPLE IMPUTATION ANALYSIS ABSTRACT

The Effect of Temperature on Drying Rate of Agro Food: Corn (Maize) and Ogbono (Irivingia Gabonnensis)

A New Approach for Smoothing Soil Grain Size Curve Determined by Hydrometer

Lecture 4. Factors affecting ripening can be physiological, physical, or biotic. Fruit maturity. Temperature.

2. Materials and methods. 1. Introduction. Abstract

Recent Developments in Coffee Roasting Technology

Vibration Damage to Kiwifruits during Road Transportation

Comparison of standard penetration test methods on bearing capacity of shallow foundations on sand

Investigation of colour agent content of paprika powders with added oleoresin

Evaluation of Soxtec System Operating Conditions for Surface Lipid Extraction from Rice

Evaluation of Quality Characteristics and Microbial Contamination of Saffron Samples Dried by Microwave

FACTORS DETERMINING UNITED STATES IMPORTS OF COFFEE

Effects of Drying and Tempering Rice Using a Continuous Drying Procedure 1

DEVELOPMENT AND STANDARDISATION OF FORMULATED BAKED PRODUCTS USING MILLETS

COMPARISON OF CORE AND PEEL SAMPLING METHODS FOR DRY MATTER MEASUREMENT IN HASS AVOCADO FRUIT

Gasoline Empirical Analysis: Competition Bureau March 2005

Relation between Grape Wine Quality and Related Physicochemical Indexes

Proceedings of The World Avocado Congress III, 1995 pp

Acta Chimica and Pharmaceutica Indica

Computerized Models for Shelf Life Prediction of Post-Harvest Coffee Sterilized Milk Drink

INCREASING PICK TO PACK TIMES INCREASES RIPE ROTS IN 'HASS' AVOCADOS.

Introduction to Measurement and Error Analysis: Measuring the Density of a Solution

Quality of Canadian oilseed-type soybeans 2017

Effect of temperature on the drying characteristics, colour and ascorbic acid content of green and gold kiwifruits

ANALYSIS OF THE EVOLUTION AND DISTRIBUTION OF MAIZE CULTIVATED AREA AND PRODUCTION IN ROMANIA

IMPACT OF RAINFALL AND TEMPERATURE ON TEA PRODUCTION IN UNDIVIDED SIVASAGAR DISTRICT

Simulation of Trough Withering of Tea using One Dimensional Heat and Mass Transfer Finite Difference Model

Wine-Tasting by Numbers: Using Binary Logistic Regression to Reveal the Preferences of Experts

Application & Method. doughlab. Torque. 10 min. Time. Dough Rheometer with Variable Temperature & Mixing Energy. Standard Method: AACCI

Development and characterization of wheat breads with chestnut flour. Marta Gonzaga. Raquel Guiné Miguel Baptista Luísa Beirão-da-Costa Paula Correia

The Brabender GlutoPeak A new type of dough rheology

Development of Value Added Products From Home-Grown Lychee

Health Effects due to the Reduction of Benzene Emission in Japan

Bread Crust Thickness Estimation Using L a b Colour System

Drying, Storing and Handling Dry Edible Bean Ken Hellevang, NDSU Extension Agricultural Engineer

Seasonal changes on chemical and physical parameters in six avocado (Persea americana Mill) cultivars grown in Chile

D Lemmer and FJ Kruger

THE GROWTH OF THE CHERRY OF ROBUSTA COFFEE

BEEF Effect of processing conditions on nutrient disappearance of cold-pressed and hexane-extracted camelina and carinata meals in vitro 1

XVII th World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR)

Environmental Monitoring for Optimized Production in Wineries

CORRELATIONS BETWEEN CUTICLE WAX AND OIL IN AVOCADOS

An Investigation of Methylsufonylmethane as a Fermentation Aid. Eryn Bottens, Jeb Z Hollabaugh, and Thomas H. Shellhammer.

Computational Fluid Dynamics Simulation of Temperature Profiles during Batch Baking

COMMUNICATION II Moisture Determination of Cocoa Beans by Microwave Oven

Design of Conical Strainer and Analysis Using FEA

Results from the studies of the yield parameters of Hungarian sunflower after pre-sowing electromagnetic treatment of the seeds

Supporing Information. Modelling the Atomic Arrangement of Amorphous 2D Silica: Analysis

Measurement and Study of Soil ph and Conductivity in Grape Vineyards

THE EFFECT OF DIFFERENT APPLICATIONS ON FRUIT YIELD CHARACTERISTICS OF STRAWBERRIES CULTIVATED UNDER VAN ECOLOGICAL CONDITION ABSTRACT

Further investigations into the rind lesion problems experienced with the Pinkerton cultivar

Chemical Components and Taste of Green Tea

DEVELOPMENT AND SENSORY EVALUATION OF READY-TO- COOK IDLI MIX FROM BROWNTOP MILLET (Panicum ramosa)

THE CONSISTOGRAPHIC DETERMINATION OF ENZYME ACTIVITY OF PROTEASE ON THE WAFFLE

CHAPTER 1 INTRODUCTION

Bag-In-Box Package Testing for Beverage Compatibility

STUDY AND IMPROVEMENT FOR SLICE SMOOTHNESS IN SLICING MACHINE OF LOTUS ROOT

JUICE EXTRACTION AND FILTRATION JUICE EXTRACTION METHOD AND EQUIPMENT

FRUIT GROWTH IN THE ORIENTAL PERSIMMON

Problem How does solute concentration affect the movement of water across a biological membrane?

OF THE VARIOUS DECIDUOUS and

DOMESTIC MARKET MATURITY TESTING

Flowering and Fruiting Morphology of Hardy Kiwifruit, Actinidia arguta

Quality of western Canadian flaxseed 2012

The effect of wheat boiling time, bulgur particle size, drying time and temperature on some physical properties of hot air dried Tarkhineh

Determination of Melamine Residue in Milk Powder and Egg Using Agilent SampliQ Polymer SCX Solid Phase Extraction and the Agilent 1200 Series HPLC/UV

The Elasticity of Substitution between Land and Capital: Evidence from Chicago, Berlin, and Pittsburgh

International Journal of Science, Environment and Technology, Vol. 6, No 1, 2017,

Quality of western Canadian lentils 2012

Effects of Different Packaging Materials on the Shelf Stability of Ginger Juice

Structural optimal design of grape rain shed

THE EFFECTS OF FINAL MOLASSES AND SUGAR PURITY VALUES ON THE CALCULATION OF 96 0 SUGAR AND FACTORY RECOVERY INDEX. Heera Singh

Problem Set #3 Key. Forecasting

Mastering Measurements

Effect of Storage Period and Ga3 Soaking of Bulbs on Growth, Flowering and Flower Yield of Tuberose (Polianthes Tuberosa L.) Cv.

Influence of Cultivar and Planting Date on Strawberry Growth and Development in the Low Desert

EFFECTS OF HIGH TEMPERATURE AND CONTROLLED FRUITING ON COTTON YIELD

Application Note FP High Sensitivity Coumarin Analysis. Introduction. Keywords

Effect of % solution concentration pretreatment on weight loss of Thompson seedless grapes Priyanka Desai, Vijay Doijad, Nishikant Shinde

The Physico-Chemical Characteristics and Effect of Albumin Concentration and Whipping Time on Foam Density of Tomato Pulp

Effect of Rice Husk on Soil Properties

Thermal Hydraulic Analysis of 49-2 Swimming Pool Reactor with a. Passive Siphon Breaker

Alcoholic Fermentation in Yeast A Bioengineering Design Challenge 1

QUALITY, PRICING AND THE PERFORMANCE OF THE WHEAT INDUSTRY IN SOUTH AFRICA

Asian Journal of Food and Agro-Industry ISSN Available online at

Comparison of Two Commercial Modified Atmosphere Box-liners for Sweet Cherries.

Transcription:

Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 13, July-December 2008 p. 47-62 Investigation into the Thin Layer Drying Models of Nigerian Popcorn Varieties Taiwo ADEMILUYI, E.O. OBOHO, and Michael OWUDOGU Department of Chemical/Petrochemical Engineering, Rivers State University of Science and Technology, Port Harcourt, Nigeria E-mail:ademuluyi@yahoo.com Abstract Drying kinetics of three popcorn varieties (Pin, Deep and Light yellow) was investigated. The popcorn kernels initially conditioned to 25% moisture content were dried in a bench scale rotary drier to 14% moisture content at various air flow rates (0.83, 1.397, 2.79 m/s) and temperatures (50 o C, 60 o C, 70 o C and 80 o C). Falling rate drying period was observed for the three popcorn varieties with Pin popcorn having the highest drying rate. Eight drying models were used to determine the thin layer drying kinetics. The Page equation, Two term model, Modified Page were found the best to describe the thin layer drying of Pin, Light yellow and Deep yellow popcorn, but the newly proposed model serve as a general model which best describe the drying kinetics of all the three popcorn varieties, with high correlation coefficient. The drying behaviour of the three kernels was found to be largely dependent on changes in temperature and air velocity Keywords Popcorn varieties, drying kinetics, mathematical models, thin layer http://lejpt.academicdirect.org 47

Investigation into the Thin Layer Drying Models of Nigerian Popcorn Varieties Taiwo ADEMILUYI, OBOHO E.O, and Michael OWUDOGU Introduction The most important factor influencing the economic value of popcorn is popping volume i.e., the volume of popped corn produced from a given weight of unpopped kernels. Processors may reject popcorn that does not meet specified minimum popping volume. Popping volume is affected somewhat by harvesting and handling practices, and by the moisture history of the popcorn prior to popping; but the primary factor is the moisture content of the kernels when popped. Studies have shown that maximum popping volume is produced at moistures ranging from 13.0 to 14.5%, with 13.5% being optimum. Data also indicate that popcorn must be initially dried to at least 13.5% moisture before it attains maximum popping volume. After that, moisture can increase to 15% without significantly decreasing popping volume. Over dried popcorn (11% or below) can be rewetted to 13.5% moisture, but it will not recover the maximum popping volume it had on initial dry down to 13.5%. Popcorn mechanically harvested on the ear at 20-25% moisture content must be dried promptly to prevent mold growth in storage [1] In Nigeria, popcorn is sun dried below 14% moisture to enable long storage of grain but this creates a lot of work for the processors, as the popcorn has to be rewetted before popping. During this rewetting process the moisture content of the popcorn may be more or less than 14%. Hence it is necessary to understand the drying characteristics of Nigerian popcorn varieties so that they can be conditioned, dried to 14% moisture content and packaged properly like the foreign type before selling to the processor. Most of the drying studies on popcorn was carried out using thin layer drying models for example Ross and White, 1972; White et al., 1981. and Morel,,1984 reported that the exponential thin layer model and page was adequate for predicting popcorn drying rates and establishing the effect of drying air conditions on the fully exposed drying characteristics of popcorn. Tran et al (1999) applied the two-compartment model to thin layer drying of two Australian popcorn varieties and obtained a correlation coefficient of 0.9858 and standard error of 0.034, assuming a single linear temperature dependence of the drying constants. The effect of ethyl oleate on the drying rates for corn was investigated in a pilot plant air-dryer by Doymaz and Mehmet. (2003). Corn was air dried without treatment or after dipping in a cold solution of ethyl oleate. The shorter drying times and best quality dried product were obtained with corn kernels dipped in the solution of ethyl oleate. The single 48

Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 13, July-December 2008 p. 47-62 exponential equation and the Page equation were used to determine the thin-layer drying characteristics. Both the equations fitted well to the experimental data. The Page equation was found to better describe the thin-layer drying of corn than the single exponential equation. Togrul and Pehlivan (2002) developed a mathematical model of solar drying of apricots in thin layer. Drying curves obtained from the data were fitted to 14 mathematical models and the effects of drying air temperature, velocity and relative humidity on the model constants and coefficients were evaluated by the multiple regression and compared to previously given models. The logarithmic drying model was found to satisfactorily describe the solar drying curve of apricots with a correlation coefficient (r) of 0.994. No work on drying kinetics of Nigerian popcorn varieties was found; hence the objective of this work is to study the thin layer drying characteristics of three Nigerian popcorn varieties. The data obtained would be fitted into 7 generally accepted thin layer drying models and a newly proposed model. Materials and Methods Experiment Popcorn varieties: yellow Pin (rice shaped), Deep yellow, Light yellow (pearl shaped) were obtained from Ahmadu Bello University (ABU), Zaria in Kaduna state, Nigeria. These varieties upon harvesting were sun-dried and stored in bags before they were purchased. These local popcorn varieties upon reception contain about 12.8 13.8% moisture. The kernels were cleaned manually to remove all foreign matter and broken kernels. The popcorn kernels were conditioned to 25% moisture content by adding a calculated quantity of water, mixing thoroughly and then sealing in separate polyethylene bags. The samples were kept at 10 C in a refrigerator for 7days for the moisture to distribute uniformly throughout the samples. Before each test, the samples were taken out of refrigerator and allowed to warm up to room temperature. Moisture content of the popcorn kernels was determined with the aid of Delm Horst grain moisture detector (G7) per pass through the rotary dryer. 40g of popcorn sample with 25% moisture content were weighed with electronic balance and dried using a bench scale rotary dryer at drum speed of 12 rev per min. The drying tests were carried out for each popcorn sample at various drying temperature ranging 49

Investigation into the Thin Layer Drying Models of Nigerian Popcorn Varieties Taiwo ADEMILUYI, OBOHO E.O, and Michael OWUDOGU from 50 o C, 60 o C, 70 o C and 80 o C and air velocities 0.83, 1.397, and 2.79 m/s. The system was allowed to run till the drying temperature stabilized before the popcorn was charged into the dryer. The samples were allowed to cool in desiccators after each run before final weighing. The drying experiments continued for each sample until the final moisture content of 14% wet basis was obtained. Thin layer drying models In drying of thin-layers of agricultural crops, the Page equation has been used extensively. The equation is empirical, and is given in equation (1)[2] M M e n MR = = Exp ( kt ) (1) M M o e where: MR = Moisture ratio; M o = initial moisture content (% db); M e = equilibrium moisture content (% db); M = moisture content at time t (% db); t = drying time (hr); k and n = drying constants. Moisture ratio data obtained at air temperatures of 50-80 o C for each variety were fitted into 7 generally accepted drying models and a newly proposed model (Taiwo Modified Page model), as shown in Table 1. Regression analyses were done using the Datafit 8.2 (Oakdale Engineering statistical software, USA). The coefficient of correlation (r) was one of the primary criteria for selecting the best equation to define the thin layer drying curves of each popcorn variety. Equilibrium moisture content (Me) of 14% (dry basis) was used; this value has been accepted as the final moisture for packaging these varieties before popping [3]. Table 1: Mathematical models given by various authors for the drying curves Model No. Name Model equation References 1 Newton MR= exp(-kt) [4] 2 Page MR = exp(-kt n ) [5] 3 Modified Page MR = exp(-(kt) n ) [6] 4 Henderson and Pabis MR = a exp(-kt) [7] 5 Logarithmic MR = a exp(-kt) + c [8] 6 Two-term MR= a exp(-k o t) + b exp (-k 1 t) [9] 7 Wang and Singh MR = 1 + at + bt 2 [10] 8 Newly proposed model MR = a exp(-(kt) n ) [11] 50

Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 13, July-December 2008 p. 47-62 Results and Discussion Effect of Moisture Content and Drying Time on Drying Rates. The variations of drying rate with moisture for the three popcorn varieties are shown in Figs 1 and 2. Drying rate decreases for all the samples with decrease in moisture content. Falling rate drying period was exhibited by the varieties. This means that the movement of water is basically diffusion controlled as reported by McCabe et al, (1987). Drying rate (g evaporated/min) 0.03 0.025 0.02 0.015 0.01 0.005 0 pin deep yellow light yellow 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Moisture content (g water/ g dry solid) Figure 1. Rate of drying curve for different popcorn varieties at 70 C, 12 rev/min, 1.397m/s Drying rate (g water evaporated/min) 0.03 0.025 0.02 0.015 0.01 0.005 0 Pin Deep yellow light yellow 0 5 10 15 20 25 30 35 Drying time (min) Figure 2. The changes with time of the drying rate of popcorn varieties at 70 C, 12 rev/min, 1.397m/s 51

Investigation into the Thin Layer Drying Models of Nigerian Popcorn Varieties Taiwo ADEMILUYI, OBOHO E.O, and Michael OWUDOGU The moisture content decreases with drying time for all the varieties, but the drying times of each kernel samples were not the same. This same behaviour was exhibited during the drying of apricot [12] and Australian popcorn varieties [13] Pin popcorn had the shortest drying time (19 mins) while light yellow popcorn has a longer drying time of 30 mins, to reach a final moisture of 14% wet basis as shown in Fig. 3. 26 % Moisture content (wet basis) 24 22 20 18 16 14 12 10 pin light yellow deep yellow 0 5 10 15 20 25 30 35 Figure 3. Drying curve of different popcorn at 70 o C, 12 rev/min, 1.397m/s Effect of Air Flow Rates and the Temperature on the Drying Rates From Figs 4-6, the moisture content decreases as temperature increases for all the varieties. The drying rate also increases with temperature. Pin popcorn dried faster than deep yellow and light yellow popcorn at all temperatures (i.e. 50 o C, 60 o C, 70 o C and 80 o C). The porosity of the varieties reported by Taiwo et al., (2006), revealed that Pin popcorn had a porosity of 42.88% while Light and Deep yellow had 38.80% and 31.50% respectively. Pin popcorn seems to be more porous hence moisture will be released faster from its pores than other varieties. 52

Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 13, July-December 2008 p. 47-62 % Moisture Content (wet basis) 26 24 22 20 18 16 14 12 10 50C 60C 70C 80C 0 10 20 30 40 50 60 Fig 4. Drying Curve for Pin Popcorn at different temperatures. % Moisture Content (wet basis) 26 24 22 20 18 16 14 12 10 0 10 20 30 40 50 60 70 80 50C 60C 70C 80C Figure 5. Drying curve for deep yellow popcorn at different temperatures. 53

Investigation into the Thin Layer Drying Models of Nigerian Popcorn Varieties Taiwo ADEMILUYI, OBOHO E.O, and Michael OWUDOGU % Moisture Content (wet basis) 26 24 22 20 18 16 14 12 10 50C 60C 70C 80C 0 10 20 30 40 50 60 70 80 Figure 6. Drying Curve for Light Yellow Popcorn at different temperatures. At different air velocities, the moisture content also decreased with time as the air velocity increased as shown in Fig 7. The changes occurring in the moisture content of popcorn by varying the air flow rates at constant air temperature seem more pronounced than those observed by varying the air temperatures at constant air flow rates. This dominance of air flow rates over the temperature is related to the transport of water vapour to the main air stream. Increasing airflow rates reduces the thickness of the boundary layer between airflows and the surface of the popcorn kernels. A similar behaviour was reported for apricot and fruit drying [12] % Moisture content (Wet Basis) 26 24 22 20 18 16 14 12 10 0 20 40 60 80 100 120 0.83m/s 1.397m/s 2.79m/s Figure 7. Effect of air velocity on the drying behaviour of Deep yellow popcorn 54

Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 13, July-December 2008 p. 47-62 Modeling of Drying Curve The falling rate drying behaviour exhibited by the popcorn varieties reveals that the Newly proposed model and other acceptable general drying models listed in the Table 1 can be used to model the drying curve for the three popcorn varieties. The experimental results were used to calculate the moisture ratio. Equilibrium moisture content of 14% was used in the calculation because this is the best moisture content popcorn can be dried before packaging. The highest popping volume is obtained at this moisture content as stated earlier. From Figs 8-10, the moisture ratio decreased as temperature increases and approaches zero as it reaches the equilibrium moisture content. Tran et al, 1999 reported a similar result for Australian popcorn. 1.2 Moisture ratio 1 0.8 0.6 0.4 0.2 0 50C 60C 70C 80C 0 10 20 30 40 50 60 Figure 8. Moisture ratio versus drying time for Pin popcorn Table 2-4 shows the regression analysis of the experimental results for the popcorn varieties using eight models. The model results (Table 2) from regression analysis of the experimental data for Pin popcorn showed that the drying behaviour of Pin popcorn can be modeled with Two term, Page, modified Page or the newly proposed model with a coefficient of multiple determination of 0.996. 55

Investigation into the Thin Layer Drying Models of Nigerian Popcorn Varieties Taiwo ADEMILUYI, OBOHO E.O, and Michael OWUDOGU 1.2 1 Moisture ratio 0.8 0.6 0.4 0.2 0 50C 60C 70C 80C 0 20 40 60 80 Figure 9. Moisture ratio versus drying time for Deep yellow popcorn 1.2 1 Moisture ratio 0.8 0.6 0.4 50C 60C 70C 80C 0.2 0 0 10 20 30 40 50 60 70 80 Drying times (mins) Figure 10. Moisture ratio versus drying time for Light yellow popcorn Moisture ratio obtained from experiment, Page model and Newly proposed model for Pin popcorn is presented in Fig 11. Doymaz & Mehmet [14], obtained similar result for corn. Wang and Singh model has the least r 2. The logarithmic model was not applicable for predicting the drying behaviour of the popcorn varieties. The results were obtained using moisture content results of four passes through the rotary dryer for good comparison between popcorn varieties. 56

Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 13, July-December 2008 p. 47-62 The result from Table 3 also revealed that the drying kinetics of Deep yellow popcorn could best be modeled using the Two term model, the newly proposed model modified Page and Page models. Newton, Henderson and Pabis and Logarithmic model were not applicable Light yellow popcorn can also be modeled from the result in Table 4 using Two term, Page, modified Page and the newly proposed model. The drying kinetics of Pin, Deep and Light yellow popcorn fitted best into the newly proposed model as shown in Fig 12 and 13. Tran et al. (1999), reported a high correlation coefficient r 2 of 0.995 for two-compartment model for two Australian popcorn varieties Table 2. Results of statistical analyses on the modelling of moisture contents and drying time for Pin popcorn at 60 o C Models Model coefficient Coefficien t 95% Confidence intervals SEE RSS R 2 s values Lower Limit Upper Limit Two term a 0.670177-3.38835 4.728701 0.04535 0.00205 0.99675 8 7 5 b 4.33E-01-4.24758 5.114269 c 0.329983-3.69297 4.352933 d 7.02E-02-0.66411 0.804435 Newly proposed model a 0.999972 0.847076 1.152868 0.03553 9 0.00252 6 0.99601 6 k 0.266182 2.18E-02 0.510579 n 0.566252 0.052698 1.079807 Modified page k 0.266194 0.124217 0.408172 0.02901 7 n 0.566243 0.257597 0.874889 Page k 0.472632 0.152607 0.792656 0.02901 7 n 0.566243 0.257597 0.874889 Herderson and pabis a 0.991148 0.790299 1.191997 0.06349 2 k 0.206459 0.108437 0.304482 Newton k 0.208154 0.138046 0.278262 0.05516 Wang and Singh 0.00252 6 0.00252 6 0.01209 4 0.01217 1 2 a -9.46E-02-0.15361-3.56E- 02 0.20709 0.12865 9 b 1.97E-03-1.97E-06 3.94E-03 0.99601 6 0.99601 6 0.98092 4 0.98080 2 0.79706 5 Where, SEE is the standard error of estimate, RSS is the residual sum of squares and R 2 is the correlation coefficient of multiple determinations. 57

Investigation into the Thin Layer Drying Models of Nigerian Popcorn Varieties Taiwo ADEMILUYI, OBOHO E.O, and Michael OWUDOGU Table 3. Results of statistical analyses on the modelling of moisture contents and drying time for Deep yellow popcorn at 60 o C Models Model coefficient Coefficient values 95% Confidence intervals SEE RSS R 2 Lower Limit Upper Limit Two term a 1.011601-5.50E-02 2.078165 0.0832 0.0069 0.98828 43 29 6 b 1.11E-01-0.31408 0.536158 c 1.35E-03-0.52665 0.529348 d -1.05E-01-11.5428 11.33199 Newly proposed model a 1.007144 0.717418 1.29687 0.0675 25 k 0.107482 4.25E-02 0.172481 n 1.014991-7.76E-03 2.037742 0.0091 19 0.98458 4 Modified page k 0.106649 7.36E-02 0.139736 0.0552 92 n 1.021426 0.421717 1.621134 0.0091 72 0.98449 5 Page k 0.101655-3.72E-02 0.24048 0.0552 92 n 1.021426 0.421717 1.621135 0.0091 72 0.98449 5 Wang and Singh a -7.81E-02-1.00E-01-5.60E-02 0.0768 64 b 1.51E-03 7.78E-04 2.24E-03 0.0177 24 z0.9700 37 1.2 1 Moisture ratio 0.8 0.6 0.4 MR Expt MR Page model MR Newly Proposed Model 0.2 0 0 5 10 15 20 25 30 35 40 Figure 11 Moisture ratio experiment, Page model and Newly proposed model for Pin popcorn 58

Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 13, July-December 2008 p. 47-62 1.2 1 Moisture ratio 0.8 0.6 0.4 MR Expt MR Newly Proposed Model MR Two term model 0.2 0 0 5 10 15 20 25 30 35 40 Figure 12. Moisture ratio experiment, two term model and newly proposed model for deep yellow popcorn 1.2 1 Moisture ratio 0.8 0.6 0.4 MR Expt MR Newly Proposed Model Two term 0.2 0 0 5 10 15 20 25 30 35 40 Figure 13. Moisture ratio experiment, two term model and Newly proposed model for Light yellow popcorn 59

Investigation into the Thin Layer Drying Models of Nigerian Popcorn Varieties Taiwo ADEMILUYI, OBOHO E.O, and Michael OWUDOGU Table 4 Results of Statistical Analyses on the Modeling of Moisture Contents and Drying Time For Light Yellow Popcorn at 60 o C Models Model coefficient Coefficient values 95% Confidence intervals SEE RSS R 2 Lower Limit Upper Limit Two term a 0.491111-2.85707 3.839295 0.0361 45 0.0013 06 0.9977 83 b 4.32E-01-4.7131 5.577337 c 0.509018-2.81195 3.829983 d 7.15E-02-0.32498 0.4679 Newly proposed model a 0.999679 0.872151 1.127206 0.0296 51 k 0.163397 8.81E-02 0.238732 n 0.644421 0.277609 1.011233 0.0017 58 0.9970 16 Modified page k 0.16348 8.82E-02 0.238738 0.0242 11 n 0.644274 0.243082 1.045465 0.0017 58 0.9970 15 Page k 0.311355 0.15385 0.468859 0.0242 11 n 0.644274 0.425685 0.862862 Wang and Singh a -8.38E-02-1.29E-01-0.03847 0.1635 31 b 1.63E-03 1.62E-04 3.09E-03 0.0017 58 0.0802 27 0.9970 15 0.8638 34 The newly proposed model (Taiwo Modified Page model) could be used as a general model to predict the drying kinetics for all the popcorn varieties, with high correlation coefficient. (r 2 ~ 1) for all the cultivars as shown in Tables. 2, 3 and 4. Also it has a lower standard error of estimate (SEE) than the Two term model. In general using the newly proposed model the moisture ratio can be modeled with time for the popcorn varieties as 1. Pin popcorn: M =0.999exp (-0.266t 0.566 ), r 2 =0.996, error = 0.0355 2. Deep yellow popcorn MR=1.007exp (-0.108t 1.015 ), r 2 =0.985, error =0.0675 3. Light yellow popcorn MR=0.999exp (-0.163t 0.644 ), r 2 = 0.997, error = 0.0297 Comparing the value of the drying constants k (which ranged from 0.266 to 0.108 for all the popcorn varieties) in the newly proposed model showed that the drying constants (k) are different for all the popcorn varieties with different drying kinetics. 60

Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 13, July-December 2008 p. 47-62 Conclusion Falling rate period was exhibited by the three popcorn varieties at different temperatures and airflow velocities. Hence, the moisture movements in the kernels are diffusion controlled. The three popcorn varieties when dried at the same condition had different drying time. The page equation was found best to describe the thin layer drying of Pin popcorn while the two term model was found to best describe the thin layer drying of Deep and light yellow popcorn. The Page equation, Two term model, Modified Page were found the best to describe the thin layer drying of Pin, Light yellow and Deep yellow popcorn, but the newly proposed model serve as a general model which best describe the drying kinetics of all the three popcorn varieties, with high correlation coefficient. The Nigerian popcorn varieties thus have different drying characteristics. Due to the large dependence of the drying rate on the temperature and the air velocity for all the varieties, work is in progress to study the effect of changing other drying parameters like, drum speed, feed flow rate as well as air humidity on the drying constants of the three popcorn varieties obtained from this research. These data would therefore be useful in the design of dryers for Nigerian popcorn varieties after proper conditioning and would further lead to processing and packaging of these varieties for export. References 1. Carter P.R., Hicks D.R., Doll J.D, Schulte E.E., Schuler R., & Holmes B. (1989) Popcorn: Alternative field crop manual URL: http://www.hort.purdue.edu/newcrop/afcm/ popcorn html August 6, 2006. 2. Togrul I. T & Pehlivan D.Mathematical modeling of solar drying of apricots in thin layers. Journal of Food Engineering 55, 209 216, 2002. 3. Gokmen S. Effects of moisture content and popping method on popping characteristics of popcorn Journal of Food Engineering. 65 (3):357-362,2004. 4. Liu, Q., & Bakker-Arkema, F. W. Stochastic modelling of grain drying, Part 2: Model development. Journal of Agricultural Engineering Research, 66, 275 280, 1997. 61

Investigation into the Thin Layer Drying Models of Nigerian Popcorn Varieties Taiwo ADEMILUYI, OBOHO E.O, and Michael OWUDOGU 5. Agrawal, Y. C., & Singh, R. P. Thin layer drying studies on short grain rough rice. ASAE Paper No: 3531,1977. 6. White, G. M., Ross, I. J., & Ponelert, C.G. Fully exposed drying of popcorn. Transactions of the ASAE, 24, 466 468,1981b. 7. Chhninman, M. SEvaluation of selected mathematical models for describing thin layer drying of in-shell pecans. Transactions of the ASAE, 27, 610 615, 1984. 8. Yagcıoglu, A., Degirmencioglu, A., & Cagatay, F. Drying characteristic of laurel leaves under different conditions. In A. Bascetincelik (Ed.), Proceedings of the 7th International Congress on Agricultural Mechanization and Energy, 26 27, 1999. 9. Rahman, M. S., Perera, C. O., & Theband, C. Desorption isotherm and heat pump drying kinetics of peas. Food Research International, 30, 485 491, 1998. 10. Wang, C. Y., & Singh, R. P. A single layer drying equation for rough rice. ASAE Paper No: 3001, 1978. 11. Ademiluyi Taiwo. Development of predictive models for drying fermented ground cassava, Unpublished PhD Thesis in Chemical Engineering River State university of Science and Technology, 2008. 12. Togrul I. T & Pehlivan D.Modelling of drying kinetics of single apricots. Journal of Food Engineering 58: 23 32, 2003. 13. Tran T.T, Srzednicki G. S &. Driscoll R.H Effects of Aeration on the Quality of popcorn. Vol. I, December, 1999. 14. Doymaz I & Mehmet. P. Thin layer drying characteristics of corn. Journal of Food Engineering. 60 (2): 125 130, 2003. 62