Archival copy. For current information, see the OSU Extension Catalog:

Similar documents
Canola D.T. Ehrensing

What is Canola? Basic Canola Agronomics. Heath Sanders Canola Field Specialist Great Plains Canola Assoc. March 31 st 2014

Archival copy. For current information, see the OSU Extension Catalog:

Influence of GA 3 Sizing Sprays on Ruby Seedless

Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange

Sunflower and Canola Production Issues Hans Kandel, NDSU Extension Agronomist

2014 PACIFIC NORTHWEST WINTER CANOLA VAREITY TRIAL REPORT. Columbia Basin Agricultural Research Center, Oregon State University, Pendleton, OR

2008 PACIFIC NORTHWEST WINTER CANOLA VARIETY TRIAL RESULTS. Columbia Basin Agricultural Research Center, Oregon State University, Pendleton, OR

Soybean Production FIELD GUIDE. for North Dakota and Northwestern Minnesota A Fargo, North Dakota

PACIFIC NORTHWEST WINTER CANOLA VARIETY TRIAL. Columbia Basin Agricultural Research Center, Oregon State University, Pendleton, OR ABSTRACT

PACIFIC NORTHWEST WINTER CANOLA VARIETY TRIAL. Columbia Basin Agricultural Research Center, Oregon State University, Pendleton, OR ABSTRACT

Growing Hazelnuts in the Pacific Northwest Hazelnut Varieties

Faba Bean. Uses of Faba Bean

PACIFIC NORTHWEST WINTER CANOLA VARIETY TRIAL. Columbia Basin Agricultural Research Center, Oregon State University, Pendleton, OR ABSTRACT

1. Planting tips for wheat planted after row crop harvest 1 2. Sunflower preharvest treatments 2 3. Fertilizer management for cool-season pastures 3

Spring & Winter Safflower as a Potential Crop South Plains Region, Texas

2010 Winter Canola Variety Trial

New Disease in Oklahoma: Blackleg of Canola

2009 Barley and Oat Trials. Dr. Heather Darby Erica Cummings, Rosalie Madden, and Amanda Gervais

Recalibration for Sunflower

ational Sunflower Survey: An Overview

New Cultivars and Research in Canola Production

Pasture Development Spring Pasture Development

AVOCADOS IN THE SAN JOAQUIN VALLEY

Effect of paraquat and diquat applied preharvest on canola yield and seed quality

Final Report to Delaware Soybean Board January 11, Delaware Soybean Board

Interactions of forage quality and quantity, their implications in grazing and hay management

Effect of paraquat and diquat applied preharvest on canola yield and seed quality

Dune - the first canola quality Brassica juncea (Juncea canola) cultivar and future Juncea canola research priorities for Australia

AVOCADO FARMING. Introduction

Selecting Collard Varieties Based on Yield, Plant Habit and Bolting 1

Avocado Farming. Common varieties grown in Kenya

Leonard P. Gianessi Cressida S. Silvers Sujatha Sankula Janet E. Carpenter

YIELD, CULTURAL PRACTICES AND YIELD LIMITING FACTORS

PLANTING WHEAT SEED DAMAGED BY FROST BEFORE HARVEST

Soybean. oybean. Soybean. Growth, development and yield of soybeans are a result of a variety s. Growth and Management QUICK GUIDE

PROBATION AND FOUNDATION PLOT PRODUCTION OF CANOLA, MUSTARD, RADISH, RAPESEED, SAFFLOWER, AND SUNFLOWER

Effect of Planting Date and Maturity Group on Soybean Yield in the Texas South Plains in 2001

Oregon s Other Tree Fruits & Nuts

Evaluating forage quality by visual appraisal, ph, and dry matter content

2003 BELL PEPPER VARIETY EVALUATION TRIALS

Bernadine Strik, Professor, Oregon State University 1

Turnips and mustards, members of

Quality of Canadian oilseed-type soybeans 2016

Science of Sun Dried Raisins

HISTORY USES AND HEALTH BENEFITS. Figure 31. Nanking cherries

Cucumbers SEASONAL AVAILABILITY

Science of Tray Dried Raisins Bill Peacock and Pete Christensen*

Identification and characteristics of the different mustard species in Kansas

YIELD, CULTURAL PRACTICES AND YIELD LIMITING FACTORS

Lack of irrigation in 2002 reduced Riesling crop in Timothy E. Martinson Finger Lakes Grape Program

Crops - Commercial. Soybeans

Watermelon production IDEA-NEW

2010 National Sunflower Association Survey. Project Leader: Hans Kandel Extension Agronomist NDSU Crop Science Department

Seeding and Reseeding of Cool-Season Forages in North Florida. G. M. Prine 1. Introduction

Quality of western Canadian flaxseed 2012

Crops - Commercial. Soybeans

Fungicides for phoma control in winter oilseed rape

Angel Rebollar-Alvitar and Michael A. Ellis The Ohio State University/OARDC Department of Plant Pathology 1680 Madison Avenue Wooster, OH 44691

Identifying Soybean Growth Stages

Bauhinia x blakeana Family: Fabaceae Hong Kong Orchid

Fungicides for phoma control in winter oilseed rape

Plant Population Effects on the Performance of Natto Soybean Varieties 2008 Hans Kandel, Greg Endres, Blaine Schatz, Burton Johnson, and DK Lee

CERTIFIED PRODUCTION OF CANOLA, MUSTARD, RADISH, AND RAPESEED

2012 Organic Broccoli Variety Trial Results

University of California Cooperative Extension Tulare County. Grape Notes. Volume 3, Issue 7 November 2006

BEANS FOR THE TENNESSEE VEGETABLE GARDEN

Harvest Aids in Soybeans - Application Timing and Value. J.L. Griffin, C.A. Jones, L.M. Etheredge, Jr., J. Boudreaux, and D.Y.

Response of Camelina Varieties to NaCl Salinity

OVERSEEDING EASTERN GAMAGRASS WITH COOL-SEASON GRASSES OR GRASS- LEGUME MIXTURES. Abstract

Evaluation of desiccants to facilitate straight combining canola. Brian Jenks North Dakota State University

By Kate Yerxa, Extension Educator

SUNFLOWER HYBRIDS ADAPTED TO THE FINNISH GROWING CONDITIONS

Klamath Experiment Station

GLOSSARY Last Updated: 10/17/ KL. Terms and Definitions

Well you see, Norm, it's like this... A herd of buffalo can only move as fast as the slowest buffalo; and when the herd is hunted, it is the slowest

Sustainable Crop Rotations with Brassica Cover Crops

Bacterial canker of sweet cherry in Oregon Disease symptoms, cycle, and management

RUST RESISTANCE IN WILD HELIANTHUS ANNUUS AND VARIATION BY GEOGRAPHIC ORIGIN

Plant Disease and Insect Advisory

1

Peach and Nectarine Cork Spot: A Review of the 1998 Season

MICRONUTRIENT MAPPING IN IDAHO, WASHINGTON AND OREGONll

S U N F L O W E R HYBRID & MARKET GUIDE

Harvesting Soybean. Soybean Loss. John Nowatzki Extension Agricultural Machine Systems Specialist

Poncho Plus CONTENTS

Legume and Cool-Season Grass Mixtures: A Demonstration Planting in Perkins County, South Dakota

Plant Disease and Insect Advisory

2013 Safflower Irrigation Research Results

Crops - Commercial. Soybean

.. Acknowledgment _----_---~

Sunflower, Canola, and Peanut Production

CONFECTION SUNFLOWER GROWERS ARE INDUSTRY LEADING

Forage Planting Alternatives Mike Ballweg, Crops & Soils Agent, Sheboygan County

1. What is the proper seeding depth for Alfalfa? a. 2 inches b. 1 ½ inches c. 1 inch d. ½ inch

Development of Host-Plant Resistance as a Strategy to Reduce Damage from the Major Sunflower Insect Pests

Sunflower: An American Native

Apples. References: New York Apple Association, Rutgers University, University of Georgia, Washington Apple Commission.

The Implications of Climate Change for the Ontario Wine Industry

Final Report. TITLE: Developing Methods for Use of Own-rooted Vitis vinifera Vines in Michigan Vineyards

Transcription:

EM 8955 Revised December 2014 Canola R. Karow History Rapeseed and canola are closely related members of the mustard family (Brassicaceae) that are both grown as oilseed crops. All current varieties of rapeseed and canola were developed from Brassica napus and Brassica rapa. Rapeseed is grown primarily as a source of erucic acid, which is not edible but is valuable in high-performance industrial lubricants. In the early 1970s, Canadian plant breeders used conventional breeding techniques to remove the anti-nutritional erucic acid and bitter glucosinolates from rapeseed. Removing these compounds resulted in an oilseed crop that produced edible oil low in saturated fats and a Canola flowers and buds. very palatable, high-protein meal for animal feed. They coined the word canola (for Canadian oil low acid) to describe a crop that is low in both compounds. Canada is currently the largest single producer of canola, with nearly 20 million acres grown annually. Because winter canola will not consistently survive Canada s extreme winter conditions, growers on the Canadian prairie produce spring-planted canola. North Dakota dominates U.S. canola production, accounting for over 60 percent of acreage in recent years. The United States has more than 1.5 million planted acres. The majority of this production is spring varieties. Improvements in winter canola varieties have spurred production in Oklahoma and Kansas. Oklahoma has become the second largest U.S. canola producer in recent years, with 10 to 20 percent of acreage. With continued strong demand for canola oil for use in food products and as a biodiesel feedstock, canola acreage is expected to increase in all U.S. regions. Photo by Tom Chastain, Oregon State University Russell Karow, crop scientist; original author Daryl T. Ehrensing, former OSU agronomist; both of Department of Crop and Soil Science, Oregon State University

Uses Nutrition Canola oil is used mainly as cooking oil and in shortening and margarine. To be considered canola, the oil and meal must both meet the following standards: Oil < 2% erucic acid Meal < 30 micromoles of glucosinolates per gram The fatty acid profiles of rapeseed and canola are compared in Table 1. Table 1. Typical fatty acid composition of canola and rapeseed oils 16:0 a 18:0 18:1 18:2 18:3 20:1 22:1 22:2 24:1 Oil source -------------------------------------- % ----------------------------------------- Canola 4 2 60 20 10 2 Rapeseed 3 1 24 15 8 13 35 1 a Fatty acid profiles show the percentage of each fatty acid component in a vegetable oil. The first number in the notation at the top of each column in the profile (e.g., 18:3) indicates the number of carbon atoms in the fatty acid. The number after the colon indicates the number of double bonds in the fatty acid. Although fatty acid profiles vary somewhat from sample to sample, they are generally used to characterize vegetable oils from particular species or varieties of plants. Because canola oil is very high in unsaturated fatty acids, it is considered a high-quality food oil that is healthy in human diets. Canola oil is particularly desirable for frying because it has a neutral flavor and can be heated to higher temperatures than many other oils, without smoking or burning. Animal feed Canola meal is a high-protein animal feed used by the dairy, cattle, and poultry industries. It is a byproduct of oilseed extraction that consists of the solids left after oil is extracted from seeds. The meal is highly palatable and typically contains 34 to 38 percent protein with a high percentage of bypass protein. Extracting oil with mechanical screw presses (rather than solvent extraction) usually leaves 8 to 12 percent residual oil in the meal, which also provides a dietary source of energy in animal feed rations. Industry Fluctuating petroleum prices and federal government policy have increased interest in growing canola for production of biodiesel in the Pacific Northwest (PNW). With its combination of high seed yield and high oil content, canola currently offers the greatest potential oil yield per acre of any PNW crop. High levels of unsaturated fatty acids in canola oil also result in biodiesel with superior low-temperature performance compared to many other vegetable oils. 2

Adaptation Climate Because it can germinate and grow in relatively cool temperatures, canola is one of the few oilseed crops that can be cultivated over wide areas of the temperate zone. Both winter and spring varieties of canola have been developed, but winter canola normally produces about twice the yield of spring canola in the same production area (see Yield, page 8). Canola can also be grown dryland or under irrigation. A major risk for production of winter canola in the PNW is stand establishment failure. Dry fall weather without enough available soil moisture to germinate and establish non-irrigated winter canola can produce erratic stands or complete crop establishment failure. Late establishment of winter canola can result in significant yield reduction. High temperatures shortly after seedling emergence can also damage and kill young canola plants by burning the stems at the soil surface. During the 2010s, Dr. Don Wysocki of Oregon State University conducted trials on dryland eastern Oregon sites in which winter canola was planted in the spring for seed harvest the following summer. Such a planting practice allows for reliable crop establishment and often results in more consistent yields than fall planting. Soil Canola performs best in well-drained soils and generally will not tolerate flooded or poorly drained areas. A range of slightly acidic to neutral ph is acceptable. Cultural practices Canola fits very well in rotation with many crops, including small grains, grass seed, and potatoes. Due to the potential buildup of diseases, however, do not plant canola more than once every 4 years in a rotation. Canola is sensitive to many persistent herbicides. Carefully read herbicide labels and avoid planting canola in areas where herbicide residues may be a problem. Since canola germinates rapidly, a simple bioassay (planting in soil from the field) can quickly determine if herbicide carryover will affect crop establishment. Some Brassica species cross-pollinate readily, and isolation of crops is essential. Cross-pollination between edible oil, industrial oil, condiment mustard, and Brassica vegetable seed crops generally reduces the quality of all crops. Most PNW states have established Brassica production districts to minimize production conflicts among growers. See Limitations on canola production in Oregon, page 8. 3

Seedbed preparation Canola seeds are small and require a firm seedbed free of large clods for optimum germination and stand establishment. Most growers use a roller with the last tillage operation to pack the soil before planting. Working soil too fine or packing too hard can cause crusting, which may inhibit seedling emergence. Planting date Since potential yield declines rapidly with later fall planting, optimum seeding dates are especially important when growing winter canola. The goal is to grow well-established plants with a closed canopy of leaves before the onset of cold weather. In western Oregon, winter canola typically is planted in mid-september. In eastern Oregon, begin planting winter canola in mid-august. Plant spring canola at the normal time for spring grain crops. As noted earlier, research is being done to develop spring-planting strategies for winter canola in dryland areas of eastern Oregon. Under this system, winter canola would be planted in late spring to early summer, when soil moisture is adequate, to assure plant establishment. To date, yields have not been superior to successful fall-planted crops, but reliability of establishment is significantly improved. Seeding rate Young canola plant. Suggested seeding rates for winter canola range from 4 to 12 pounds of seed per acre. Under normal conditions, plant 4 to 7 pounds of seed per acre. Use higher seeding rates (8 to 12 pounds per acre) for late plantings, heavier soils, or in field conditions where emergence may be reduced. Plant spring canola at 5 to 8 pounds of seed per acre. Canola seeds. Photo by Daryl T. Ehrensing, Oregon State University Photo by Tom Chastain, Oregon State University Seeding depth Optimum seeding depth is ½ to 1 inch. Row spacing Canola usually is planted with a conventional grain drill. In highmoisture areas or under irrigation, a row width of 6 to 10 inches normally is used. In dryland conditions, row width should be increased 4

to 12 to 16 inches. Narrower row spacing promotes rapid canopy closure and reduces weed competition. Variety selection Many commercial winter and spring canola varieties are available. Most of the recently developed spring canola varieties have been genetically modified to induce herbicide resistance. These include Clearfield, Liberty Link, and Roundup Ready. Herbicide resistant winter canola varieties are also beginning to appear on the market. Non- GMO winter and spring canola varieties are currently available in the PNW but may become more difficult to find. Fertilizer Response of canola to fertilizer application is highly Canola rosettes at 10 weeks. dependent on moisture availability and soil type. Under irrigation or in high-rainfall areas where yield potential is higher, increased rates of applied fertilizer may be economical. In dryland conditions or on less productive soils, less fertilizer may be needed for maximum production. Photo by Daryl T. Ehrensing, Oregon State University Nitrogen Nitrogen (N) is generally the most limiting nutrient in canola production, so providing adequate nitrogen is essential to maximize canola yield. The amount of nitrogen fertilizer required by canola depends on the variety, its potential yield, and the amount of available nitrogen in the soil. Canola takes up approximately 7 lb N/100 lb of expected seed yield. If fall N is needed for winter canola, apply 30 to 50 lb N/acre prior to planting and the remainder in the spring. Since most nitrogen uptake in canola occurs before bolting, adequate N must be available in the soil prior to the crop s rapid growth period. Apply spring N before bolting begins. Sulfur Sulfur (S) requirements of canola are greater than those of cereal crops. Canola requires about 1 lb S/100 lb of expected seed yield. Phosphorus Both winter and spring canola often benefit from application of phosphorus when soil test levels are below 5 ppm. Phosphorus is generally most effective when applied prior to seeding. Potassium Soil potassium levels normally are adequate for canola in the PNW, but apply potassium when soil test values are below 75 ppm. 5

Boron Winter canola generally requires more boron than many other crops grown in rotation with it. Apply 1 to 2 lb boron/acre if soil tests indicate levels below 0.5 ppm. Avoid over-application, since excess boron is toxic to canola. Weed control Canola seedlings normally develop quickly and compete well with annual weeds. Well-timed planting and good stand establishment promote rapid leaf canopy closure, which suppresses many weed species. Weed problems usually develop with late planting and poor stand establishment. Several grass and broadleaf herbicides are currently registered for use in canola production in the PNW. Consult local weed control guides for information on application rates and timing. Pest management Diseases Plant diseases are one of the most serious canola production problems. The two most important diseases are sclerotinia stem rot and blackleg. Sclerotinia stem rot (or white mold) is caused by the fungus Sclerotinia sclerotiorum. Infection weakens the plant stem, causing losses from lodging and early ripening. This disease infects many other crops, including sunflower, potatoes, safflower, beans, peas, and alfalfa. Blackleg, the most serious disease of canola, is caused by the fungus Phoma lingum (Leptosphaeria maculans). This disease is carried over from season to season on Canola plants in bloom. infected stubble and spreads by airborne spores or through infected seed. Seed treatment with fungicides is very effective in controlling blackleg and is required on planting seed used in Oregon. Blackleg can cause yield reductions up to 50 percent due to premature ripening and lodging. In 2014, based on finds of blackleg in Oregon, the Oregon Department of Agriculture (ODA) imposed restrictions on seed treatments and disease-free certification requirements for all Brassica and related species. See the ODA website for current canola-related restrictions. Several fungicides are currently registered for use in canola production in the PNW. Consult local disease control guides for information on diseases that may be controlled with fungicides, and for application rates and timing. Since fungicides have limited effectiveness on many canola diseases, it s important to practice a minimum 4-year crop rotation. For 6 Photo by Daryl T. Ehrensing, Oregon State University

canola planting in Oregon, it is required to use seed stock that has been certified as being free of blackleg. Using resistant varieties will also help reduce disease problems as canola production increases. Insect pests Insects have been relatively minor pests in PNW canola production, but several insect pests have been identified in canola fields in Oregon. Cabbage seedpod weevil (Ceutorynchus assimilis) is the most important insect pest of canola. Adult weevils lay eggs near young seedpods, and the larvae enter the pods to feed on developing seeds. Larval feeding can reduce yield by 20 to 30 Canola pods. Photo by Tom Chastain, Oregon State University percent. Field monitoring and proper timing of insecticide treatment are essential to achieve control. Several species of aphids (cabbage aphid, turnip aphid, and green peach aphid) are found on canola in the PNW. Aphid feeding on rosettes can reduce rosette size and vigor, adversely affecting winter survival and yield. Aphid feeding on floral parts can reduce seed set and yield. Adult flea beetles sometimes damage canola seedlings by feeding on cotyledons and young leaves, causing a shothole appearance. This usually occurs during warm, dry weather conditions shortly after crop emergence. Several insecticides are currently registered for use in canola production in the PNW. Consult local insect pest control guides for information on insects that may be controlled with insecticides, and for application rates and timing. Harvest Proper harvest timing is critical with canola to attain high yield and oil quality. Early harvest leads to excessive green seed, reduced oil content, and high seed moisture. Late harvest can result in severe crop losses due to shattering, because mature, dry canola pods open very easily. Harvest canola either by swathing, followed by combine pickup when the crop is dry, or by direct combining. Timing of swathing is important to minimize seed loss. Because canola seeds on the bottom of the plant mature before those at the top, sample seed from pods on the lower third of the main stem when inspecting the crop for maturity. Begin swathing when seeds have turned brown on the lower third of the main stem. 7

Direct combining standing canola can be extremely risky, and seed losses can be very high when the pods are dry and brittle. In the Columbia Basin, growers have had good success using canola pushers prior to combine harvesting. The pushers bend the canola stems over just above the soil surface rather than cutting the stems with a windrower. This allows the crop to ripen while reducing stem movement and shattering by the wind. When mature, the canola is then direct combined traveling in the opposite direction of the pusher. Fully mature canola seed is dark brown or black. Optimum seed moisture at harvest is 8 to 9 percent. Windrowing canola. Photo by Daryl T. Ehrensing, Oregon State University Yield Canola yield varies widely depending on variety, time of planting, available moisture, soil fertility, and harvest timing. Wellestablished winter canola tends to produce the highest seed yield. Winter canola has yielded as much as 4,800 pounds of seed per acre in replicated Oregon trials in high-rainfall areas of the PNW. Spring canola tends to produce about half the yield of winter canola. Low-rainfall, dryland yields are typically half those obtained in high-rainfall or irrigated areas. Combining canola. Photo by Daryl T. Ehrensing, Oregon State University Limitations on canola production in Oregon On August 14, 2013, Governor Kitzhaber signed into law HB2427, regarding the growing of canola in the Willamette Valley. The law does the following: Prohibits raising canola within the Willamette Valley Authorizes Oregon State University to grow not more than 500 acres of canola within the Willamette Valley for the purpose of carrying out research that was funded and authorized by the 2013 Oregon State Legislature Allocates $679,000 to Oregon State University to carry out the research proposal 8

At the conclusion of the research, Oregon State University will compile a report with the outcomes of the research study and present its findings no later than November 1, 2017 to the Oregon State Legislature. The law was effective upon signing by the governor and sunsets on January 2, 2019. Canola production is allowed outside the boundaries of the protected district of the Willamette Valley and is under lesser restrictions in other parts of the state. See the ODA website for more information on restrictions within Oregon: http://arcweb.sos.state.or.us/ pages/rules/oars_600/oar_603/603_052.html. OSU Extension Service publications Oregon State University Extension Service publications available online at http://extension.oregonstate.edu/catalog/ Irrigated and Dryland Canola Nutrient Management Guide (EM 8943) Other resources Berglund, D.R. and Kent McKay. 2007. Canola Production. North Dakota State University Extension Circular A-686. Archived in NDSU library: http://library.ndsu.edu/tools/dspace/ load/?file=/repository/bitstream/handle/10365/5281/a686. pdf?sequence=1 Franzen, D.W. and J. Lukach. 2013. Fertilizing Mustard and Canola. North Dakota State University Extension Circular SF-1122. http://www.ag.ndsu.edu/publications/landing-pages/ crops/fertilizing-canola-and-mustard-sf-1122 Oregon Department of Agriculture. 2013. Rapeseed Control Areas. http://www.oregon.gov/oda/programs/nurserychristmastree/ Pages/Quarantines.aspx Zollinger, R.K. 2014. 2014 North Dakota Weed Control Guide. North Dakota State University Extension Circular W-253. http://www.ag.ndsu.edu/publications/landing-pages/crops/ nd-weed-control-guide-2013-w-253 Trade-name products and services are mentioned as illustrations only. This does not mean that the Oregon State University Extension Service either endorses these products and services or intends to discriminate against products and services not mentioned. 2014 Oregon State University. Extension work is a cooperative program of Oregon State University, the U.S. Department of Agriculture, and Oregon counties. Oregon State University Extension Service offers educational programs, activities, and materials without discrimination based on age, color, disability, gender identity or expression, genetic information, marital status, national origin, race, religion, sex, sexual orientation, or veteran s status. Oregon State University Extension Service is an Equal Opportunity Employer. Published February 2008. Revised December 2014. 9