SOTM LAB: B13 12/99. TITLE OF LAB: Anaerobic Respiration Using Yeast

Similar documents
The fermentation of glucose can be described by the following equation: C6H12O6 2 CH3CH2OH + 2 CO2 + energy glucose ethanol carbon dioxide.

Factors Affecting the Rising of Bread Dough - Ingredients

Anaerobic Cell Respiration by Yeast

Alcoholic Fermentation in Yeast A Bioengineering Design Challenge 1

Grapes of Class. Investigative Question: What changes take place in plant material (fruit, leaf, seed) when the water inside changes state?

Cell Biology: Is Yeast Alive?

Greenhouse Effect Investigating Global Warming

Objective: To observe fermentation and discuss the process. Problem: Will yeast give off significant amounts of gas to inflate a balloon?

BIO Lab 4: Cellular Respiration

Unit Test: Nature of Science

LABORATORY INVESTIGATION

1. Identify environmental conditions (temperature) and nutritional factors (i.e. sugar and fat) that encourages the growth of bacteria.

Lab 2: Phase transitions & ice cream

ph and Color Change - Activity Sheet

1. Identify environmental conditions (temperature) and nutritional factors (i.e. sugar and fat) that encourages the growth of bacteria.

Candidate Number. Other Names

The Floating Leaf Disk Assay for Investigating Photosynthesis

Greenhouse Effect. Investigating Global Warming

Gravimetric Analysis

Coffee-and-Cream Science Jim Nelson

I. INTRODUCTION I ITEMS:

1. Determine which types of fruit are susceptible to enzymatic browning.

Properties of Water TEACHER NOTES. Earth: The Water Planet Laboratory Investigation. Key Concept. Alternate Materials.

Mastering Measurements

1. What is made when a solute is dissolved in a solvent?

Please be sure to save a copy of this activity to your computer!

Shades from Shapes. Materials Required. Task 1: Movement of Particles

Diffusion & Osmosis Labs

1. Explain how temperature affects the amount of carbohydrate (sugar) in a solution.

Introduction to Measurement and Error Analysis: Measuring the Density of a Solution

KEY. Chemistry End of Year Cornerstone Assessment: Part A. Experimental Design

Grade: Kindergarten Nutrition Lesson 4: My Favorite Fruits

Slow Rot or Not! By Jennifer Goldstein

Dry Ice Rainbow of Colors Weak Acids and Bases

Enzymes in Industry Time: Grade Level Objectives: Achievement Standards: Materials:

Solubility Lab Packet


Investigating Fungi II Yeast

Mixtures and Solutions Stations Lesson Plan by Clara Welch Based on FOSS & Kitchen Chemistry by John Bath, Ph. D. and Sally Mayberry, Ed. D.

The Effects of the Rate of Nitrogen Consumption on the Duration of Alcohol Fermentation Remain Unknown

Science Grade 5 FORMATIVE MINI ASSESSMENTS. Read each question and choose the best answer. Be sure to mark all of your answers.

Dry Ice Color Show Dry Ice Demonstrations

Problem How does solute concentration affect the movement of water across a biological membrane?

Y9 EXAM. Mostly on Science techniques!

Evaluation copy. Falling Objects. Experiment OBJECTIVES MATERIALS

COURSE FOD 3030: CREATIVE BAKING

- NSES-C, NSES-F, NSES-G, NHES-1

LEARNING OUTCOMES NATIONAL CURRICULUM LINKS. Lactobacillus

1. Diagram the anatomy of an egg and make observations of its parts. 3. Determine the effects of substances on the stability of egg white foams.

TEACHER: SCIENCE YEAR 9 EXAMINATION Total time allowed for both examinations: 2 hours

Experiment # Lemna minor (Duckweed) Population Growth

Lab 2. Drug Abuse. Solubility and Colligative Properties of Solutions: Coffee, Soda, and Ice Cream

HARD ROCK Candy. This experiment will take several days to complete.

The Reaction of Different Yeast to Different Types of Food Sources. By: Samantha Addington, Paulina Manrriquez, Mackenzie Staples, and Zach Morgan

Activity 2.3 Solubility test

4 th Grade 1 st 6 Weeks SCIENCE Test

Functions of Raising Agents

Lab 2. Drug Abuse. Solubility and Colligative Properties of Solutions: Coffee, Soda, and Ice Cream

Lab Activity on Density, Buoyancy and Convection

LAB: One Tube Reaction Part 1

1 Exploring Heat from the Basics of Physics Series Pre-Test

Cooking with Acids & Bases

FOR PERSONAL USE. Capacity BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN ACTIVITY ASSESSMENT OPPORTUNITIES. Grade 3 Quarter 1 Activity 2

EGG OSMOSIS LAB. Introduction:

1. Describe the effect of stirring and kneading dough on the formation of gluten.

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Prescribed task: Factors affecting the rising of bread dough. Ms Mancy Chan Pui Tak Canossian College

Specific Heat of a Metal

Mr. Hanson s Science Class Acid/Base Chemistry Experiments for 2014

Particle model of solids, liquids and gases/ solutions

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Photosynthesis: How do plants get energy? Student Advanced Version

Which of the following tools should Rebecca use to measure the mass of each sample? Question 2. Add

Activity Sheet Chapter 5, Lesson 5 Using Dissolving to Identify an Unknown

Experiment 3: Separation of a Mixture Pre-lab Exercise

Egg-cellent Osmosis Lab

SPLENDID SOIL (1 Hour) Addresses NGSS Level of Difficulty: 2 Grade Range: K-2

1. Determine methods that can be used to form curds and whey from milk. 2. Explain the Law of Conservation of Mass using quantitative observations.

Method 3 (carbon dioxide)

Setting up your fermentation

Name. Microorganisms C 3 Workbook

Diffusion, Osmosis, and Water Potential Lab Report

Unit 4P.2: Heat and Temperature

Page1. Rename Fruits, Vegetables and Spices Written by GEF Staff. Grades: PreK-2 Subjects: Science, Math Time: 30 minutes

Moving Molecules The Kinetic Molecular Theory of Heat

Measure the specific heat of lead. Identify an unknown metal from its specific heat (optional),

Make Biscuits By Hand

Experimental Procedure

Chemistry 212 MOLAR MASS OF A VOLATILE LIQUID USING THE IDEAL GAS LAW

THE EGG-CITING EGG-SPERIMENT!

The grade 5 English science unit, Solutions, meets the academic content standards set in the Korean curriculum, which state students should:

BLBS015-Conforti August 11, :35 LABORATORY 1. Measuring Techniques COPYRIGHTED MATERIAL

1. Determine methods that can be used to form curds and whey from milk. 2. Explain the Law of Conservation of Mass using quantitative observations.

Answering the Question

SCENARIO Propose a scenario (the hypothesis) for bacterial succession in each type of milk:

Biology 30S Unit #1 Wellness & Homeostasis

Photosynthesis: How do plants get energy? Student Version

Name: Period: Score: / Water Olympics

Properties of Water. reflect. look out! what do you think?

Problem: What effect does an increase in concentration and temperature have on the rate of diffusion?

Transcription:

SOTM LAB: B13 12/99 I. TEACHER NOTES & GUIDELINES TITLE OF LAB: Anaerobic Respiration Using Yeast Developers of lab: Jennifer Mortellaro JD 449, Jim Prockup JD 575, Joe Busse JD 405. OVERVIEW OF LAB DESCRIPTION: This laboratory activity investigates anaerobic respiration using a simple organism called yeast. The second section of the lab studies what type of carbohydrate source is used most readily as an energy source by yeast. CURRICULUM CONSIDERATIONS: Regents biology during respiration. The first section can be completed in one 40-min. Lab period. The inquiry section will take an additional 30-40 min. Lab period. REAL WORLD APPLICATIONS: Bread Making, Brewing, Wine, Cheese-Making, Biofuel Production of Gasohol SAFETY CONSIDERATIONS: Students should wear goggles just in case the yeast bubbles out of the flask. Do not let the students drink the yeast culture. Make sure the setup is as far away from the laptops as possible in case of any spills. BACKGROUND INFORMATION A. SCIENTIFIC VIEWPOINT: Commercially, alcoholic fermentation is used in such diverse products as breadmaking, brewing, wine and cheese-making, as well as biofuel production of gasohol. It is only the type of carbohydrate that is fermented that varies in each of these processes. Baker s yeast is probably the most commonly used microbe in the world. In the absence of oxygen, this yeast ferments simple sugars to carbon dioxide and ethanol. The CO 2 is produced as small gas bubbles, which carbonate liquids within sealed containers, or lighten (leaven) the texture of dough causing it to rise. The ethanol produced remains in liquids but evaporates off during the baking process in breads. The yeast also imparts a characteristic odor and flavor to the final product. Recall that all living organisms need energy in the form of ATP for cellular activities. Organisms can produce ATP from food sources through several pathways. This activity introduces the process of anaerobic respiration in the form of alcoholic fermentation by yeast. Yeasts are members of the fungi kingdom, which can utilize different carbohydrate sources to produce energy in the absence of oxygen, producing ethyl alcohol (ethanol) and CO 2 as byproducts. C 6 H 12 O 6 ----> 2C 2 H 5 OH + 2CO 2 + 2ATP 1

The more fermentation that takes place by the yeast, the more ATP produced. So we can deduce that the more readily a carbohydrate allows ATP to be produced, the better a source of energy it is for the yeast. ATP and ethanol are difficult to measure in the lab, but the other by-product of fermentation, carbon dioxide, can be easily detected and measured. Bromthymol blue is an indicator solution that changes from blue to yellow (or greenish-yellow) in the presence of carbon dioxide. We will also use the Pasco software and a ph probe to measure carbon dioxide production. B. COMMON MISCONCEPTIONS: 1. Yeast is not a living organism. 2. Carbon dioxide is produced in the lungs from oxygen. 3. Fermentation is only used to make bread and alcohol. OBJECTIVES After a lab on measuring fermentation rate of yeast, the student will be able to: Determine fermentation rate of yeast by measuring ph. Correlate ph changes to carbon dioxide concentration and rate of fermentation. Determine which type of energy source yeast utilizes most efficiently for fermentation. Interpret graphical results Compare and contrast anaerobic respiration and aerobic respiration. EQUIPMENT/MATERIALS PROVIDED BY SOTM: Rubber Tubing Carbohydrate Sources (Molasses, Lactose) Bromthymol Blue Solution Pasco Setup: Laptop, ph Meter, 300 Or 500 Interface 125ml Erlenmeyer Flasks with Stoppers and tubing *Hot Plates *NaOH Solution *HCl Solution *Electronic Balance *Dry Active Yeast *Optional, by request PROVIDED LOCALLY You will need one of each per setup: 2 Beakers (At Least 80 Ml) Water (Tap Is Fine) 35 40 C Graduated Cylinder (~50 Ml) Stirring Rod of Some Sort Glucose (Karo Syrup) Sucrose You will also need at least one balance if you are going to have the students weigh out the yeast. 2

ADVANCE PREPARATION Depending on time constraints, the teacher may want to pre-weigh the yeast and make up the sugar solutions for the students. Then, the students would only have to combine ingredients and collect their measurements. The sugar solutions should be 10% solutions to match the sugar concentration of the original molasses solution. You may also want to add a very small amount of dilute base (NaOH) to the distilled water to bring it up to a ph of about 8 or 9. This will show the best color changes of the bromthymol blue from a dark blue to yellow. If your tap does not provide water of about 35-40 C water, you may want to have a flask of warm water setup for the students to use for the yeast solution. II. PRE-LAB PRE-LAB EXERCISE TO ELICIT STUDENTS PRIOR KNOWLEDGE AND MISCONCEPTIONS Prior to the students coming into the classroom, place some yeast and warm water in a bottle. Cover the top of a bottle with a balloon. When the students come into the room, ask them what is going on with the bottle in the front of the room (if their interest isn t already peaked by the expanding balloon). Do not tell them what is in the bottle. Create a list on the board of possibilities for the expansion of the balloon. Lead this into a discussion of yeast and anaerobic respiration. DISCUSSION OF PRECONCEPTIONS Ask the students if they have ever seen or made yeast bread. Ask them why the bread should sit for a while before baking? What makes the mixture bubble and rise? Why does the bread stop rising after baking? You might also want to review the requirements of all organisms in carrying out basic l life functions. III. EXPLORATION OF SCIENTIFIC PRINCIPLE & INTRODUCTION OF EXPERIMENTAL PROTOCOL PROBLEM Your task is to quantify the rate of fermentation of yeast by measuring carbon dioxide production. EXPERIMENT AND TECHNICAL OPERATION OF EQUIPMENT *Note: The teacher may want to have a control fermentation apparatus set up with sugar water minus the yeast. PROCEDURE: 1. Obtain the following supplies: #4 or 5 one hole rubber stopper with tubing attached erlenmeyer flask (150 ml) 2 beakers (at least 80 ml) 45 ml tap water 35 40 c 3

graduated cylinder (~50 ml) dry active yeast 3 g 50 ml tap water any temperature carbohydrate source 5 ml of molasses bromthymol blue solution Pasco setup: laptop, ph meter, 300 or 500 interface, interface cables 2. Have half of your group set up the computer while the other half assembles the fermentation equipment. COMPUTER SETUP: 1. Attach the Pasco interface to the laptop using the beige interface cable. The cable plugs into the back of the computer and the back of the interface. 2. Plug in the power supply cord for the laptop in the back of the computer and into the surge protector. 3. Plug in the power supply cord for the interface in the back of the interface and into the surge protector. 4. Turn on the interface the switch is in the back. The green light should light up on the front. 5. Turn on your laptop with the switch on the left side. 6. While it is booting up, plug in the ph probe to slot A in the front of the interface. Be sure to line up the pins and push in gently. 7. Double click on the Science Workshop icon on the desktop to open the program. 8. Tell the computer that you have the ph probe connected by clicking and dragging the probe icon onto slot A of the picture of the interface. 9. When prompted, choose ph for what you will be measuring. 10. Also, click and drag a table and a graph onto the ph probe icon. 11. In the box under Record, Play, etc., click on the button labeled sampling options. Change the sampling rate to every 2 seconds by clicking on the dot next to slow, then clicking on the arrows until you see 2 seconds displayed. Click ok. 12. Maximize your graph and table so you can see them easily. 13. Change the scale of the y-axis so that the max is 10 and the min is 4 by left clicking on any of the numbers of the y-axis. 14. Fill one of the beakers with 50 ml of tap water and place 1 ml of bromthymol blue into the distilled water. Place the ph probe into this solution. Click on the Mon button in Science Workshop to monitor the ph of the solution in order to make sure that the ph is stable. FERMENTATION SETUP: 1. Weigh out 3 g of dry yeast on a piece of weighing paper. Be sure not to get any liquid into the container of yeast! Set it aside. 2. Measure 45 ml of warm tap water (35 40 C) into another beaker. Add enough molasses to bring the solution up to the 50-ml mark on the beaker. It doesn t have to be EXACT, but get as close as you can. Stir the mixture until the molasses is dissolved. 3. Pour the molasses solution into the Erlenmeyer flask. 4. Before adding the yeast, make sure the computer is set up and ready to record your data. 4

DATA COLLECTION: 1. When ready, add the 3g of yeast to the Erlenmeyer flask and stir with a stirring rod until the yeast has begun to dissolve. 2. Cap the Erlenmeyer flask with the rubber stopper and place the other end of the tubing into the beaker with the bromthymol blue solution. 3. Click on the Rec (record) button in science workshop. Make sure that you see that it has begun recording. 4. Gently swirl the yeast + sugar solution once every 30 seconds until you begin to see bubbles forming on the top of the solution. 5. Observe the bromthymol blue solution. Once you begin to see bubbles coming out of the tubing, gently swirl the beaker ensure mixing. 6. Observe any changes in ph and also color change in the beaker. Note what the ph was for each color of the bromthymol blue solution. 7. When the foam on top of the yeast + sugar solution gets ½ way up the flask, gently swirl the flask so that the foam dissolves. This will ensure that your solution does not bubble into the tubing. 8. Record your data for 10 20 min. depending on what your teacher instructs. ANALYSIS: 1. What happened to the ph of the bromthymol blue solution? 2. Did the color of the bromthymol blue solution stay the same? If not, what color (s) did it turn and what was the ph of each color change? 3. What was the gas that was produced into the tubing? How do you know? 4. How does ph relate to fermentation? 5. Can you determine the rate of fermentation from your results? If so, how? 6. Why did we use warm water? 7. Could we have used any kind of sugar? Why did we use molasses? IV. ELABORATION OF SCIENTIFIC PRINCIPLE: INQUIRY-BASED STUDENT INVESTIGATION PROBLEM Your task is to design an experiment that will investigate factors that play a role in the rate of fermentation. Choose ONE variable to change at a time and design a procedure to test your hypothesis. Predict what will happen to the rate of fermentation for your experiment. HYPOTHESIS OR PREDICTION What variable can I alter that will affect the rate of fermentation of yeast? Predict what will happen to the rate of fermentation. EXPERIMENTAL DESIGN To design your procedure to test your hypothesis, consider the following questions: What are you trying to determine? What variable are you altering and why have you selected this variable? What environmental conditions will you keep constant? How will you provide for a control? How can you measure this data? 5

What materials/equipment will you require? What steps will you have to take to conduct your investigation? How will you present your findings and experimental data? (Tables, graphs, charts?) Checkpoint (Teacher checks students experimental design for feasibility.) PLAN FOR DATA COLLECTION & ANALYSIS How are you going to explain inconclusive data? How will you prove that your data is valuable and accurate? Checkpoint (Teacher checks students plan for feasibility.) CONDUCTING THE EXPERIMENT Be sure that you have only altered one variable from the original experiment. Checkpoint (Teacher monitors students investigations in progress.) ANALYSIS OF DATA Checkpoint (Teacher checks students analysis.) DISCUSSION OF RESULTS COMPARE Does your data match your hypothesis? Why or why not? PERSUADE Write a brief paragraph persuading me that your data is valuable to the general public. RELATE Relate your findings to something that can be useful in everyday life. It does not have to be useful DIRECTLY to you, but can indirectly affect you. 6

V. EVALUATION POST-LAB SURVEY OF STUDENTS CONCEPTIONS Have students retake the Pre-Lab Exercise. Compare pre-lab and post-lab responses. TRADITIONAL Have the students do a traditional lab write up using their own data and the rest of the class data, especially from the inquiry section. Ask the students to decide which carbohydrate source the yeast used most efficiently and what variable tested had the most effect on rate of fermentation. ALTERNATIVE Have students write a commercial or an advertisement for their new finding about the effects of rate of fermentation and its application to real life. For example, if they determined that equal was the most efficient source of energy for yeast fermentation, they can write an ad for its inclusion in new bread recipes instead of traditional sugar. *This material is based upon work supported by the National Science Foundation under Grant No. ES1 9618936. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. 7