Simulation of the Frequency Domain Reflectometer in ADS

Similar documents
Activity 10. Coffee Break. Introduction. Equipment Required. Collecting the Data

AWRI Refrigeration Demand Calculator

Route List Configuration

1. Installation 2. Transferring a Stackup from Altium Designer 3. Transferring a Stackup and Design Rules to Altium Designer

Organic Chemistry 211 Laboratory Gas Chromatography

Biocides IT training Vienna - 4 December 2017 IUCLID 6

Route List Setup. About Route List Setup

Olea Tumor Basic VPMC-13988A

Biocides IT training Helsinki - 27 September 2017 IUCLID 6

NVIVO 10 WORKSHOP. Hui Bian Office for Faculty Excellence BY HUI BIAN

iworx Sample Lab Experiment GB-4: Ecological Balance

Biologist at Work! Experiment: Width across knuckles of: left hand. cm... right hand. cm. Analysis: Decision: /13 cm. Name

Firebox X Edge e-series Hardware

Which of your fingernails comes closest to 1 cm in width? What is the length between your thumb tip and extended index finger tip? If no, why not?

Falling Objects. computer OBJECTIVES MATERIALS

Lesson 41: Designing a very wide-angle lens

Lesson 41: Designing a very wide-angle lens

Tamanend Wine Consulting

Greenhouse Effect. Investigating Global Warming

PRODUCTION SOFTWARE FOR WINEMAKERS. Wine Operations and Laboratory Analyses

LABORATORY INVESTIGATION

Olea Head and Neck DCE VPMC-14290A

STA Module 6 The Normal Distribution

STA Module 6 The Normal Distribution. Learning Objectives. Examples of Normal Curves

Specialist. o-lunch Healthy and Delicious. List of Menu Items with Prices I.. Word Specialist. New Skills: TheOffice. Project #: Project Title

Wideband HF Channel Availability Measurement Techniques and Results W.N. Furman, J.W. Nieto, W.M. Batts

Directions for Menu Worksheet. General Information:

Most Affordable Professional Grade 2D & 3D CAD Software

Greenhouse Effect Investigating Global Warming

openlca case study: Conventional vs Organic Viticulture

INSTALLATION AND OPERATING MANUAL BUNN-O-MATIC CORPORATION

THE STEEL DETAILER SolidWorks 2016 INSTALLATION PROCEDURE

PRODUCT EXAMPLE PIZZA

Activity Instructions

CREC Munis Employee Self Service. Employee Self Service User Guide Version 11.2

Barista Document Output Object

Welcome to Grubhub. Table of contents. You ve joined the nation s leading online and mobile food ordering platform. Set up your account...

User s Manual. User s Manual Version 1.0. Chulalongkorn University. Raks Thai Foundation. Worcester Polytechnic Institute. January 29 th, 2013

Munis Self Service. Employee Self Service User Guide Version For more information, visit

IKAWA App V1 For USE WITH IKAWA COFFEE ROASTER. IKAWA Ltd. Unit 2 at 5 Durham Yard Bethnal Green London E2 6QF United Kingdom

TOASTER OVEN USER MANUAL MODEL: PKMFT039

CMC DUO. Standard version. Table of contens

Evaluation copy. Falling Objects. Experiment OBJECTIVES MATERIALS

Table Reservations Quick Reference Guide

Welcome to the BeerSmith(TM) Help Page. This web oriented help system will help you enhance your brewing experience using BeerSmith.

ENGI E1006 Percolation Handout

Mini Project 3: Fermentation, Due Monday, October 29. For this Mini Project, please make sure you hand in the following, and only the following:

Parent Self Serve Mobile

Vigilant DIY Wine Cellar Planner How-To Instructions

Application & Method. doughlab. Torque. 10 min. Time. Dough Rheometer with Variable Temperature & Mixing Energy. Standard Method: AACCI

Directions for Menu Worksheet ***Updated 9/2/2014 for SY *** General Information:

User Guide WINE CELLAR. Contents I GB F. Installation, 2 Location and power connection Technical information D E P

... A Vital Part of Connection World CMPTER. Cable Connectors Receptacles With Solder End Protective Caps N CONNECTORS

INSTALLATION MANUAL TG - ROTISSERIE OVEN MODELS

GENETICALLY MODIFIED SOYBEANS VERSUS TRADITIONAL SOYBEANS HOW DO THEY COMPARE?

Step 1: Prepare To Use the System

Predicting Wine Quality

PROGRAMMING MANUAL. Sure Immersion 220 Bean-To-Cup, Single Serve, Air Infusion Brewer

3. Aspirin Analysis. Prelaboratory Assignment. 3.1 Introduction

Caffeine in Energy Drinks

Name: Adapted from Mathalicious.com DOMINO EFFECT

The fermentation of glucose can be described by the following equation: C6H12O6 2 CH3CH2OH + 2 CO2 + energy glucose ethanol carbon dioxide.

Experiment 2: ANALYSIS FOR PERCENT WATER IN POPCORN

POLYAMIDE PA6.6 INSULATED END SLEEVES PKC

Medfusion 3500 V6. Syringe Infusion Pump. Quick Reference Card

Guided Study Program in System Dynamics System Dynamics in Education Project System Dynamics Group MIT Sloan School of Management 1

Lead spacing Diameter d 1 Type

Lead spacing Diameter d 1 Type

Measuring Fluoride in Water and Wastewater using the Thermo Scientific Orion Dual Star ph/ise Meter

Administration Guide HighSpeedWaiter.com

HI Formol Number Mini Titrator for Wine and Fruit Juice Analysis

FURUNO Multi-GNSS Disciplined Oscillator

TEACHER NOTES MATH NSPIRED

Design a Coffee Mug Step 1

CafeRomatica NICR7.. Fully automatic coffee centre Operating Instructions and Useful Tips. A passion for coffee.

Dust Introduction Test to determine ULPA Filter Loading Characteristics in Class II Biosafety Cabinets

+ = Power up your Smart Cup while pressing the corresponding button to reach different program modes. Heat Exchange fill/tank Drain Page:

For Jura parts, repairs & tech support, contact: Services Unlimited, Inc./ Parts Guru

Chapter 1: The Ricardo Model

Built in Electric Fan Oven

Thermal Hydraulic Analysis of 49-2 Swimming Pool Reactor with a. Passive Siphon Breaker

ACID Classic and Classic Plus version 4.3 User Manual

STUDY AND IMPROVEMENT FOR SLICE SMOOTHNESS IN SLICING MACHINE OF LOTUS ROOT

Conv. Pre Heat. Speed. bake. clean. Conv. Bake time. Clean. convert. Maxx clean. Conv. Broil. roast. Oven

Given a realistic scenario depicting a new site install, the learner will be able to install and setup the brewer for retail turnover without error.

THE STEEL DETAILER SolidWorks 2015 INSTALLATION PROCEDURE

Metallized Polyester Film Capacitors (MKT) in Plastic Case B B Standard applications

AS450, AS600, G1, SG630

Hotpoint H/A - Ariston automatic, built-in coffee machine MCX 103 X - MCK 103 X/HA

Step by step guide to The Nutrition Program

IT tool training. Biocides Day. 25 th of October :30-11:15 IUCLID 11:30-13:00 SPC Editor 14:00-16:00 R4BP 3

Oven. Self-Cleaning cycle. Oven. Clock. light. Start time. Bake time

TRIPLE INFUSION PUMP WITH AUTOMATIC CYCLING TIMER

Case Study 8. Topic. Basic Concepts. Team Activity. Develop conceptual design of a coffee maker. Perform the following:

User Manual. Table of Contents. Introduction Chapter 1 Chapter 2 Chapter 3 Appendices Glossary

Pollinating almonds: how many bees do you need?

Homework Due on Tuesday 5/30

Cafeteria Ordering System, Release 1.0

PickYourOwn.org. Where you can find a pick-your-own farm near you!


Transcription:

Simulation of the Frequency Domain Reflectometer in ADS Introduction The Frequency Domain Reflectometer (FDR) is used to determine the length of a wire. By analyzing data collected from this simple circuit we can determine the condition of the wire under test. This tutorial will focus on how to setup and simulate the FDR under a variety of circumstances. We will start by creating a new project and setting up the actual FDR circuit. This design will then be used to analyze different wire configurations. FDR Setup From the Main window (Fig. 1) in ADS select a new project by selecting File and then New Project, or click the folder icon to the far left of the tool bar. Name the project when prompted, and then a blank design page should appear. We are now ready to create our FDR circuit. Fig 1. ADS Main Window We will be creating the circuit shown in Fig 2. We start by placing the Voltage source to the left. This part can be found in the Sources-Freq Domain Library. Libraries are selected in the pull-down menu to the far left of the screen. Make sure that all

Figure 2. FDR circuit. settings are as shown in the figure. Parameters can be altered by double clicking the component itself, or by single clicking the parameter, and typing the value to be changed. Next we place the Resistor, which can be found in the Lumped-Components Library. To rotate a part simply press Ctrl-R while the part is selected. Three-port S-Parameter boxes in the middle represent the couplers. These cannot be found in a Library. Instead we place the cursor in the pull-down menu next to the one for the libraries. We then type s3p. When we move the cursor back to the design page we see the three-port S-Parameter box. These should be placed as shown. Remember to rotate the second one as shown. Next we double click on the component. This will produce another dialog box. Select the File Option and then select Browse next to the box that displays the name of the file. You can then select the name of the S-Parameter file that represents the couplers being used. This file should be placed in the Data

folder of the project. For more information on how to set up these files consult the ADS documentation. Appendix A contains the file used in this example. The VMult acts as our mixer. It can be found in the System-Amps & Mixers Library. Double click on the component and select the linear parameter. Change this to yes. Ports can be found to the right of the popup-menus. Place the first port on the bottom, and the second one at the upper right. Ports will allow the circuit to function within other more complex systems without redrawing the entire circuit. Ground connections are to the immediate left of the Port connections. Place these as shown in the circuit. Finally we connect the parts with wires. Wires are drawn by typing Ctrl-W and clicking on the nodes we wanted connected. We can also move a part until one node touches the other, and then sliding it back into position. Finally we save this figure by selecting the disk icon. Name it FDR. We are now ready to move onto more complex wire systems. Wire Setup The previous section established a basic FDR design, and serves as a template for all future simulations. It can be simply copied and pasted into a new project, where it can be developed and simulated as desired. This section will discuss what can be done with the FDR once it has been placed in a project. First we discuss some things that will need to be in place for all simulations. After we have setup the FDR as described in the previous section we select File, New in the design window. This opens a new design window where we can perform the simulation. First we need to place the MSUB parameters. This is found in the TLines- Microstrip Library. This will provide the characteristics of all the MLINs which we will use to represent our wires. Figure 3 shows some sample values that could be used for this. Figure 3 also shows the values that should be used for the AC simulation parameters. The values shown are the same used in the FDR200. This can be found in the Simulation AC Library.

MSub MSUB MSub1 H=30.0 mil Er=3.2 Mur=1 Cond=1.0E+50 Hu=3.9e+034 mil T=.3 mil TanD=0 Rough=0 AC AC AC1 Start=100 MHz Stop=220 MHz Step=.46875 MHz Figure 3 Parameter values for MSUB and AC Simulation

The simplest simulation one might perform is a single straight wire. The wire will be simulated by a microstrip line titled MLIN. This part can be found in the TLines- Microstrip Library. The length and impedance can be changed based on the values entered for length and width, respectively. For the MSUB parameters shown in Figure 3 a width of 71.695 mils corresponds to a 50 Ω Transmission Line. Notice that the length does not have to be in the same units of measurement. All other values should be left as default. To add the FDR we type FDR in the same box we used earlier to obtain the Three-Port S-Parameter box. The part will then appear. Port one should be connected to the transmission line, and port should have a wire connected to it that terminates a short distance from the FDR as shown in Figure 4. This wire should be named by clicking the red icon labeled name on the second row of the design window. Figure 4. Single wires connected to FDR.

Loss can be modeled through two-port S-Parameter boxes. These are obtained in the same manner as the S3P blocks used in the FDR circuit. Type S2P in the same block, insert them between the FDR and the wire, and then specify the file to be used. More complex wiring diagrams can be obtained by using the MTEE found in the same library as the MLIN. This acts as a T-Connector between wires, and allows complex branches to be created. We are finally ready to simulate! This can be done by pressing F7, selecting the yellow gear icon next to the name icon, or by selecting Simulate, Run. From the menu bar. This will produce the window shown in Figure 5, as well as a blank data display similar to that shown in Figure 6. In the Data Display Window, click on the square graph icon immediately below the arrow icon on the right. This will produce the graph shown in Figure 6 with a window prompting for the data to be displayed. This dialog box is shown in Figure 7. The names of wires labeled by the user will appear. Select the one you would like displayed, then select >>Add>>. The dialog box shown in Figure 8 will appear. Select Magnitude, then click OK. Click OK again. This will then display data similar to that shown in Figure 6. Figure 5. Simulation Results Report

Figure 6. Data Display Window. Figure 7. Data Display Dialog Box.

Figure 8. Data Display sub Dialog Box Finally we need to process the data. A simple FFT function is available in ADS, however better results, including additional processing can be obtained in Matlab. A sample program that performs this analysis is found in Appendix B. To export the data from ADS we select File, Export, Write selected item to tab-delimited ASCII. This is shown in Figure 9. In order for this option to be available the data display box must be selected (A red box will surround the graph). Once the file has been exported. The first line must be deleted, and the file needs to be moved to the Matlab path to be processed.

Figure 9. Export data to text file.

Appendix A Three-Port S-Parameter File lrdc-10-1j.txt # MHz S DB R 50 5.0000000e+000-2.9750000e+001 0.0000000e+000-8.7000000e-001 0.0000000e+000-1.0600000e+001 0.0000000e+000-8.7000000e-001 0.0000000e+000-1.9490000e+001 0.0000000e+000-4.3660000e+001 0.0000000e+000-1.0600000e+001 0.0000000e+000-4.3660000e+001 0.0000000e+000-1.9550000e+001 0.0000000e+000 7.5000000e+000-3.1630000e+001 0.0000000e+000-8.4000000e-001 0.0000000e+000-1.0550000e+001 0.0000000e+000-8.4000000e-001 0.0000000e+000-1.9740000e+001 0.0000000e+000-4.4570000e+001 0.0000000e+000-1.0550000e+001 0.0000000e+000-4.4570000e+001 0.0000000e+000-1.9710000e+001 0.0000000e+000 1.0000000e+001-3.2780000e+001 0.0000000e+000-8.3000000e-001 0.0000000e+000-1.0550000e+001 0.0000000e+000-8.3000000e-001 0.0000000e+000-1.9860000e+001 0.0000000e+000-4.4750000e+001 0.0000000e+000-1.0550000e+001 0.0000000e+000-4.4750000e+001 0.0000000e+000-1.9800000e+001 0.0000000e+000 2.0000000e+001-3.3510000e+001 0.0000000e+000-8.3000000e-001 0.0000000e+000-1.0560000e+001 0.0000000e+000-8.3000000e-001 0.0000000e+000-1.9920000e+001 0.0000000e+000-4.4950000e+001 0.0000000e+000-1.0560000e+001 0.0000000e+000-4.4950000e+001 0.0000000e+000-1.9810000e+001 0.0000000e+000 3.0000000e+001-3.3370000e+001 0.0000000e+000-8.5000000e-001 0.0000000e+000-1.0580000e+001 0.0000000e+000-8.5000000e-001 0.0000000e+000-1.9890000e+001 0.0000000e+000-4.5000000e+001 0.0000000e+000-1.0580000e+001 0.0000000e+000-4.5000000e+001 0.0000000e+000-1.9780000e+001 0.0000000e+000 4.0000000e+001-3.2970000e+001 0.0000000e+000-8.7000000e-001 0.0000000e+000-1.0610000e+001 0.0000000e+000-8.7000000e-001 0.0000000e+000-1.9860000e+001 0.0000000e+000-4.4840000e+001 0.0000000e+000-1.0610000e+001 0.0000000e+000-4.4840000e+001 0.0000000e+000-1.9770000e+001 0.0000000e+000 5.0000000e+001-3.2400000e+001 0.0000000e+000-8.9000000e-001 0.0000000e+000-1.0610000e+001 0.0000000e+000-8.9000000e-001 0.0000000e+000-1.9830000e+001 0.0000000e+000-4.4840000e+001 0.0000000e+000-1.0610000e+001 0.0000000e+000-4.4840000e+001 0.0000000e+000-1.9770000e+001 0.0000000e+000 6.0000000e+001-3.1760000e+001 0.0000000e+000-8.9000000e-001 0.0000000e+000-1.0620000e+001 0.0000000e+000-8.9000000e-001 0.0000000e+000-1.9810000e+001 0.0000000e+000-4.4550000e+001 0.0000000e+000-1.0620000e+001 0.0000000e+000-4.4550000e+001 0.0000000e+000-1.9800000e+001 0.0000000e+000 7.0000000e+001-3.1210000e+001 0.0000000e+000-9.1000000e-001 0.0000000e+000-1.0630000e+001 0.0000000e+000-9.1000000e-001 0.0000000e+000-1.9810000e+001 0.0000000e+000-4.4540000e+001 0.0000000e+000-1.0630000e+001 0.0000000e+000-4.4540000e+001 0.0000000e+000-1.9830000e+001 0.0000000e+000 8.0000000e+001-3.0510000e+001 0.0000000e+000-9.0000000e-001 0.0000000e+000-1.0620000e+001 0.0000000e+000-9.0000000e-001 0.0000000e+000-1.9800000e+001 0.0000000e+000-4.4570000e+001 0.0000000e+000-1.0620000e+001 0.0000000e+000-4.4570000e+001 0.0000000e+000-1.9860000e+001 0.0000000e+000 9.0000000e+001-2.9770000e+001 0.0000000e+000-9.0000000e-001 0.0000000e+000-1.0620000e+001 0.0000000e+000-9.0000000e-001 0.0000000e+000-1.9780000e+001 0.0000000e+000-4.4400000e+001 0.0000000e+000-1.0620000e+001 0.0000000e+000-4.4400000e+001 0.0000000e+000-1.9900000e+001 0.0000000e+000 1.0000000e+002-2.8950000e+001 0.0000000e+000-9.2000000e-001 0.0000000e+000-1.0640000e+001 0.0000000e+000-9.2000000e-001 0.0000000e+000-1.9770000e+001 0.0000000e+000-4.4440000e+001 0.0000000e+000-1.0640000e+001 0.0000000e+000-4.4440000e+001 0.0000000e+000-1.9940000e+001 0.0000000e+000 1.2500000e+002-2.7100000e+001 0.0000000e+000-9.4000000e-001 0.0000000e+000-1.0660000e+001 0.0000000e+000-9.4000000e-001 0.0000000e+000-1.9740000e+001 0.0000000e+000-4.4160000e+001 0.0000000e+000-1.0660000e+001 0.0000000e+000-4.4160000e+001 0.0000000e+000-2.0100000e+001 0.0000000e+000 1.5000000e+002-2.5820000e+001 0.0000000e+000-9.8000000e-001 0.0000000e+000-1.0680000e+001 0.0000000e+000

-9.8000000e-001 0.0000000e+000-1.9660000e+001 0.0000000e+000-4.3720000e+001 0.0000000e+000-1.0680000e+001 0.0000000e+000-4.3720000e+001 0.0000000e+000-2.0220000e+001 0.0000000e+000 1.7500000e+002-2.5190000e+001 0.0000000e+000-9.6000000e-001 0.0000000e+000-1.0670000e+001 0.0000000e+000-9.6000000e-001 0.0000000e+000-1.9560000e+001 0.0000000e+000-4.3220000e+001 0.0000000e+000-1.0670000e+001 0.0000000e+000-4.3220000e+001 0.0000000e+000-2.0370000e+001 0.0000000e+000 2.0000000e+002-2.4570000e+001 0.0000000e+000-9.7000000e-001 0.0000000e+000-1.0670000e+001 0.0000000e+000-9.7000000e-001 0.0000000e+000-1.9400000e+001 0.0000000e+000-4.2470000e+001 0.0000000e+000-1.0670000e+001 0.0000000e+000-4.2470000e+001 0.0000000e+000-2.0490000e+001 0.0000000e+000 2.2500000e+002-2.3550000e+001 0.0000000e+000-9.7000000e-001 0.0000000e+000-1.0670000e+001 0.0000000e+000-9.7000000e-001 0.0000000e+000-1.9270000e+001 0.0000000e+000-4.1810000e+001 0.0000000e+000-1.0670000e+001 0.0000000e+000-4.1810000e+001 0.0000000e+000-2.0670000e+001 0.0000000e+000 2.5000000e+002-2.2420000e+001 0.0000000e+000-1.0500000e+000 0.0000000e+000-1.0720000e+001 0.0000000e+000-1.0500000e+000 0.0000000e+000-1.9130000e+001 0.0000000e+000-4.0750000e+001 0.0000000e+000-1.0720000e+001 0.0000000e+000-4.0750000e+001 0.0000000e+000-2.0870000e+001 0.0000000e+000 2.7500000e+002-2.1650000e+001 0.0000000e+000-1.0900000e+000 0.0000000e+000-1.0740000e+001 0.0000000e+000-1.0900000e+000 0.0000000e+000-1.8970000e+001 0.0000000e+000-3.9960000e+001 0.0000000e+000-1.0740000e+001 0.0000000e+000-3.9960000e+001 0.0000000e+000-2.1090000e+001 0.0000000e+000 3.0000000e+002-2.1390000e+001 0.0000000e+000-1.0500000e+000 0.0000000e+000-1.0710000e+001 0.0000000e+000-1.0500000e+000 0.0000000e+000-1.8780000e+001 0.0000000e+000-3.9090000e+001 0.0000000e+000-1.0710000e+001 0.0000000e+000-3.9090000e+001 0.0000000e+000-2.1310000e+001 0.0000000e+000 3.2500000e+002-2.1140000e+001 0.0000000e+000-1.0400000e+000 0.0000000e+000-1.0690000e+001 0.0000000e+000-1.0400000e+000 0.0000000e+000-1.8600000e+001 0.0000000e+000-3.8240000e+001 0.0000000e+000-1.0690000e+001 0.0000000e+000-3.8240000e+001 0.0000000e+000-2.1570000e+001 0.0000000e+000 3.5000000e+002-2.0530000e+001 0.0000000e+000-1.1000000e+000 0.0000000e+000-1.0730000e+001 0.0000000e+000-1.1000000e+000 0.0000000e+000-1.8440000e+001 0.0000000e+000-3.7200000e+001 0.0000000e+000-1.0730000e+001 0.0000000e+000-3.7200000e+001 0.0000000e+000-2.1870000e+001 0.0000000e+000 3.7500000e+002-1.9860000e+001 0.0000000e+000-1.1600000e+000 0.0000000e+000-1.0770000e+001 0.0000000e+000-1.1600000e+000 0.0000000e+000-1.8280000e+001 0.0000000e+000-3.6310000e+001 0.0000000e+000-1.0770000e+001 0.0000000e+000-3.6310000e+001 0.0000000e+000-2.2220000e+001 0.0000000e+000 4.0000000e+002-1.9490000e+001 0.0000000e+000-1.1300000e+000 0.0000000e+000-1.0720000e+001 0.0000000e+000-1.1300000e+000 0.0000000e+000-1.8090000e+001 0.0000000e+000-3.5530000e+001 0.0000000e+000-1.0720000e+001 0.0000000e+000-3.5530000e+001 0.0000000e+000-2.2610000e+001 0.0000000e+000 4.2500000e+002-1.9280000e+001 0.0000000e+000-1.1500000e+000 0.0000000e+000-1.0720000e+001 0.0000000e+000-1.1500000e+000 0.0000000e+000-1.7850000e+001 0.0000000e+000-3.4720000e+001 0.0000000e+000-1.0720000e+001 0.0000000e+000-3.4720000e+001 0.0000000e+000-2.2950000e+001 0.0000000e+000 4.5000000e+002-1.8880000e+001 0.0000000e+000-1.2000000e+000 0.0000000e+000-1.0750000e+001 0.0000000e+000-1.2000000e+000 0.0000000e+000-1.7620000e+001 0.0000000e+000-3.3890000e+001 0.0000000e+000-1.0750000e+001 0.0000000e+000-3.3890000e+001 0.0000000e+000-2.3310000e+001 0.0000000e+000 4.7500000e+002-1.8380000e+001 0.0000000e+000-1.2500000e+000 0.0000000e+000-1.0780000e+001 0.0000000e+000-1.2500000e+000 0.0000000e+000-1.7370000e+001 0.0000000e+000-3.3110000e+001 0.0000000e+000-1.0780000e+001 0.0000000e+000-3.3110000e+001 0.0000000e+000-2.3650000e+001 0.0000000e+000 5.0000000e+002-1.8160000e+001 0.0000000e+000-1.2300000e+000 0.0000000e+000-1.0740000e+001 0.0000000e+000-1.2300000e+000 0.0000000e+000-1.7140000e+001 0.0000000e+000-3.2360000e+001 0.0000000e+000-1.0740000e+001 0.0000000e+000-3.2360000e+001 0.0000000e+000-2.3030000e+001 0.0000000e+000

Appendix B M-File to Analyze ADS DATA PlotFft.m function f=plotfft(n1,n2,t1,t2); % This function plots the fft of the difference of a test case with the % base case, it also plots the fft of each data set. % % INPUT % n1 = Name of the file containing data from base case simulation % exported from ADS with the first line containing text deleted % n2 = Name of the file containing data from test case simulation % also exported from ADS % t1 = string to be displayed as title on first plot produced % t2 = string to be displayed as title on second plot % % OUTPUT % f = the three lengths that are associated with the three peaks % The first f value is the length of the Base Case % The second f value is the length of the Test Case % The third f value is the max peak of the difference plot % The fourth f value indicates the first peak of the difference plot % and should correspond to the distance to the 'break'. % % Author: Jeremy Pruitt % Last Modified: Oct. 23, 2002 startup % File provided by You Chung Chung to make lines bolder % Load data sets from names given data1=load(n1); data2=load(n2); % Find Average and subtract from original data dt1=mean(data1(:,2)); dt2=mean(data2(:,2)); dat1=data1(:,2)-dt1; dat2=data2(:,2)-dt2; % Determine length index of graph er=3.2; % Epsilon relative Defined by Msub parameters d=.000762; % 30 mils (H) W=.001821; % 71.678 mils (W) epsilone=(er+1)/2 + ((er-1)/2)*(1/sqrt(1+12*d/w)); % Epsilon effective c= 2.998e8; % Speed of Light u= c/sqrt(epsilone); % Velocity of propagation deltaf=data1(2,1)-data1(1,1); % Frequency step distance Lmax= u/(4*deltaf); % maximum length of cable Lin=Lmax*39.37; % Convert to inches Ltemp=Lin*2; % Expand to fit 1024 point fft

distance=0:(lin*2)/(1024-1):lin*2; % Calculate step and adjust % Compute 1024 Fourier Transforms four1=fft(dat1,1024); % Base Case four2=fft(dat2,1024); % Test Case diff=dat1-dat2; % difference between two cases dfm=mean(diff); four=fft(diff,1024); % Compute Magnitudes of Fourier Transforms magfour1=abs(four1); magfour2=abs(four2); magfour=abs(four); % Find Peak locations(i.e. length of cable) nd=1; % Noise Displacement to compensate for noise at zero inches [peak1,loc1]=max(magfour1(nd:end/2)); loc1=loc1-1; [peak2,loc2]=max(magfour2(nd:end/2)); loc2=loc2-1; [peak,loc]=max(magfour(1:end/2)); %loc=loc; fstpeak=peak/2; % Initialze minimum peak value i=1; % first index to check for first peak fstloc=i; % Stores the location of the first peak % Find first peak while((fstpeak==peak/2)&(i<length(magfour))) % Look for first value larger than min peak value if(fstpeak<magfour(i)) while(magfour(i)>fstpeak) % Go up the slope until you hit the peak fstpeak=magfour(i); i=i+1; end fstloc=i-1; % Assign index to acces distance vector fstpeak=magfour(i-1); % Record the peak value to plot later end i=i+1; end f=[distance(loc1+nd) distance(loc2+nd) distance(loc) distance(fstloc)]; % Set graph size minx=0; maxx=lin/5; % Only look at half the data miny=0; % Magnitudes are all positive maxy1=40; % These are changed depending on how close we want to zoom in maxy2=30; % Plot Of Raw Data figure(1) subplot(2,1,1), plot(data1(:,1),data1(:,2),data2(:,1),data2(:,2),'r') title('orignal Waveforms') legend('base Case','Test Case',0); subplot(2,1,2), plot(data1(:,1),diff,'k') title('difference between Waveforms')

xlabel('frequency') % Plot Results of FFTs figure(2) subplot(2,1,1), plot(distance,magfour1,'b',distance,magfour2,'r',distance(loc1+nd),peak1,'go',distance(loc2+nd),peak2,'c*') ; axis([minx maxx miny maxy1 ]); title(t1); ylabel('magnitude of FFT'); %xlabel('distance in Inches'); %legend('base Case','Test Case',['Base Case is ', num2str(f(1)) ' in.'],['test Case is ', num2str(f(2)) ' in.'] ); %legend('base Case','Test Case',['d_{BC}= ', num2str(f(1)) '"'],['d_{tc}= ', num2str(f(2)) '"'] ); legend('bc','tc',['d_{bc}= ', num2str(f(1)) '"'],['d_{tc}= ', num2str(f(2)) '"'],0); % Second Plot %figure(2) subplot(2,1,2), plot(distance,magfour,'k',distance(fstloc),fstpeak,'o',distance(loc),peak,'x'); axis([minx maxx miny maxy2]); title(['fft of the difference: ', t2]); ylabel('magnitude of FFT'); xlabel('distance in Inches'); %legend( 'FFT',['The first peak is ', num2str(distance(fstloc)),'" from the FDR'],['The max peak is ', num2str(distance(loc)),'" from the FDR']); legend( 'FFT',['d_{FP}= ', num2str(distance(fstloc)),'"'],['d_{mp}= ', num2str(distance(loc)),'"'],0);