Early season grapevine canopy management, Part II: Early leaf removal (ELR)

Similar documents
2012 Research Report Michigan Grape & Wine Industry Council

Leaf removal: a tool to improve crop control and fruit quality in vinifera grapes

Management and research of fruit rot diseases in vineyards

Colorado State University Viticulture and Enology. Grapevine Cold Hardiness

Organic viticulture research in Pennsylvania. Jim Travis, Bryan Hed, and Noemi Halbrendt Department of Plant Pathology Penn State University

Lack of irrigation in 2002 reduced Riesling crop in Timothy E. Martinson Finger Lakes Grape Program

Berry = Sugar Sink. Source: Sink Relationships in the Grapevine. Source: Sink Relations. Leaf = Photosynthesis = Source

Canopy Management for Disease Control in Wine Grapes Grape IPM Workshop March, 2011

Michigan Grape & Wine Industry Council 2012 Research Report. Understanding foliar pest interactions for sustainable vine management

Crop Load Management of Young Vines

Early season grapevine canopy management, Part I: Shoot thinning By: Maria Smith and Dr. Michela Centinari, Dept. of Plant Science

is pleased to introduce the 2017 Scholarship Recipients

Yield Components, Vegetative Growth and Fruit Composition of Istrian Malvasia (Vitis vinifera L.) as Affected by the Timing of Partial Defoliation

Do lower yields on the vine always make for better wine?

HANDS-ON SOLUTIONS TO OVERCOME FAST GRAPE RIPENING

Mechanical Canopy and Crop Load Management of Pinot Gris. Joseph P. Geller and S. Kaan Kurtural

Flowering and Fruiting Morphology of Hardy Kiwifruit, Actinidia arguta

World of Wine: From Grape to Glass Syllabus

Training system considerations

Influence of GA 3 Sizing Sprays on Ruby Seedless

Final Report. TITLE: Developing Methods for Use of Own-rooted Vitis vinifera Vines in Michigan Vineyards

Research News from Cornell s Viticulture and Enology Program Research Focus Cornell Researchers Tackle Green Flavors in Red Wines

Kelli Stokely Masters of Agriculture candidate Department of Horticulture Oregon Wine Research Institute

Monitoring Ripening for Harvest and Winemaking Decisions

Practical Aspects of Crop Load and Canopy Management

World of Wine: From Grape to Glass

Canopy Management. M of W 08/02/2012. Plumpton College

INVESTIGATIONS INTO THE RELATIONSHIPS OF STRESS AND LEAF HEALTH OF THE GRAPEVINE (VITIS VINIFERA L.) ON GRAPE AND WINE QUALITIES

Impact of Vineyard Practices on Grape and Wine Composition

Demonstration Vineyard for Seedless Table Grapes for Cool Climates

IMPOSING WATER DEFICITS TO IMPROVE WINE QUALITY AND REDUCE COSTS

Bounty71 rootstock an update

Effects of Leaf Removal and UV-B on Flavonoids, Amino Acids and Methoxypyrazines

Late season leaf health CORRELATION OF VINEYARD IMAGERY WITH PINOT NOIR YIELD AND VIGOUR AND FRUIT AND WINE COMPOSITION. 6/22/2010

AN ENOLOGY EXTENSION SERVICE QUARTERLY PUBLICATION

Late-season disease control options to manage diseases, but minimize fermentation problems and wine defects

Grape Weed Control. Harlene Hatterman-Valenti North Dakota State University

Research Report: Use of Geotextiles to Reduce Freeze Injury in Ontario Vineyards

Mechanical Shoot & Leaf Removal Practices. Sean Dean

DR. RENEE THRELFALL RESEARCH SCIENTIST INSTITUTE OF FOOD SCIENCE & ENGINEERING UNIVERSITY OF ARKANSAS

Ohio Grape-Wine Electronic Newsletter

A new approach to understand and control bitter pit in apple

Wine Grape Trellis and Training Systems

Lesson 2 The Vineyard. From Soil to Harvest

Fruit Set, Growth and Development

Vineyard IPM Scouting Report for week of 12 July 2010 UW-Extension Door County and Peninsular Agricultural Research Station Sturgeon Bay, WI

Cold Climate Wine Grape Cultivars: A New Crop in the Northeast and Upper Midwest Regions of the USA

FOH WINE AND BEER KNOWLEDGE LESSON WEEK TWO

Managing Pests & Disease in the Vineyard. Michael Cook

Performance of cool-climate grape varieties in Delta County. Horst Caspari Colorado State University Western Colorado Research Center

Sorghum Yield Loss Due to Hail Damage, G A

THE AWSEF IS PLEASED TO INTRODUCE THE 2018 SCHOLARSHIP RECIPIENTS

Coonawarra Wine Region. Regional summary report WINEGRAPE UTILISATION AND PRICING SURVEY 2007

Rhonda Smith UC Cooperative Extension, Sonoma County

Global Perspectives Grant Program

Varieties and Rootstocks in Texas

Quadrilateral vs bilateral VSP An alternative option to maintain yield?

Fungicides for phoma control in winter oilseed rape

Identification of Grapevine Trunk Diseases in Virginia and Implementation of Control Strategies.

Managing potato leafhopper in wine grapes

Vine Training Systems: What Purposes Do They Serve and What Attributes Are Most Important? Thomas J. Zabadal, MSU Dept.

The Pomology Post. Hull Rot Management on Almonds. by Brent Holtz, Ph.D., University of California Pomology Advisor

1. Continuing the development and validation of mobile sensors. 3. Identifying and establishing variable rate management field trials

Timothy E. Martinson Area Extension Educator Finger Lakes Grape Program Cornell Cooperative Extension

McLaren Vale wine region. Regional summary report WINEGRAPE UTILISATION AND PRICING SURVEY 2007

Texas A&M AgriLife Extension Service Grapevine Cold Hardiness

Performance of cool-climate grape varieties in Delta County. Horst Caspari Colorado State University Western Colorado Research Center

EFFECT OF CURING AND SEAL PACKAGING ON PEEL AND PULP WEIGHT LOSS PERCENTAGE OF SCUFFING DAMAGED AND UNDAMAGED CITRUS FRUIT.

Cost of Establishment and Operation Cold-Hardy Grapes in the Thousand Islands Region

The impact of smoke exposure on different grape varieties. Renata Ristic and Kerry Wilkinson

Fungicides for phoma control in winter oilseed rape

2011 Regional Wine Grape Marketing and Price Outlook

Joseph A. Fiola, Ph.D. Specialist in Viticulture and Small Fruit Western MD Research & Education Center Keedysville Road Keedysville, MD

Vineyard Insect Management what does a new vineyard owner/manager need to know?

PRD. ( : -*) 3- Water Use Efficiency 3 (WUE)

What Went Wrong with Export Avocado Physiology during the 1996 Season?

Evolution of Grapegrowing Techniques and New Viticulture Ideas in Spain. Jesús Yuste.

Growing your blend Georgia Wine Producers Conference. January 24, Cain Hickey

Psa and Italian Kiwifruit Orchards an observation by Callum Kay, 4 April 2011

OUTLINE Plan of the talk. Introduction Vineyards are variable in space The efficient vineyard project. The field site in Sonoma Results

University of California Cooperative Extension Tulare County. Grape Notes. Volume 3, Issue 4 May 2006

New Wine Grape Grower Workshop 2013

Your headline here in Calibri.

Vineyard Water Management

Is fruit dry matter concentration a useful predictor of Honeycrisp apple fruit quality after storage?

NEW ZEALAND AVOCADO FRUIT QUALITY: THE IMPACT OF STORAGE TEMPERATURE AND MATURITY

18 PHOTOSYNTHESIS AND CARBOHYDRATE PARTITIONING IN CRANBERRY

Macroclimate in New York and Site Suitability

Session 4: Managing seasonal production challenges. Relationships between harvest time and wine composition in Cabernet Sauvignon.

2015 BUD SURVIVAL SURVEY IN NIAGARA AREA VINEYARDS

Coonawarra COONAWARRA VINTAGE OVERVIEW. Vintage Report. Overview of vintage statistics

Quadrilateral vs bilateral VSP An alternative option to maintain yield?

Treating vines after hail: Trial results. Bob Emmett, Research Plant Pathologist

Strategies for reducing alcohol concentration in wine

Development of smoke taint risk management tools for vignerons and land managers

An Introduction to StellarTan Premium Tannins. Gusmer June 6, 2018 Windsor, CA

Tremain Hatch Vineyard training & design

Vineyard IPM Scouting Report for week of 15 September 2014 UW-Extension Door County and Peninsular Agricultural Research Station

Lecture 4. Factors affecting ripening can be physiological, physical, or biotic. Fruit maturity. Temperature.

Influence of shoot density on leaf area, yield and quality of Tas-A-Ganesh grapes (Vitis vinifera L.) grafted on Dog Ridge rootstock

Transcription:

Subject: New England Grape Notes, June 6, 2017 From: Sonia Schloemann <umassfruit@umass.edu> Date: 6/6/17, 3:56 PM To: UMassFruit <umassfruit@umass.edu> N e w E n g l a n d G r a p e N o t e s - J u n e 6, 2 0 1 7 June Update Canopy and disease management continue to be the main concerns for this time of year. Shoot thinning (and cluster thinning where needed) was covered in the last issue of Grape Notes. This issue provides excellent information on leaf removal. Dr. Wayne Wilcox has released his annual Grape Disease Control for 2017. This is the most thorough discussion of all the issues related to disease management for grapes that is available for our region. You can download your copy at here. The 2017-18 New England Small Fruit Management Guide is available online at http://ag.umass.edu/fruit /ne-small-fruit-management-guide and in print for $16 by going to https://www.umassextensionbookstore.com /products/108. Finally, the University of Vermont is offering a Cold Climate Viticulture Course. This viticulture course is an opportunity for new and aspiring growers to receive a comprehensive knowledge base for establishing or maintaining a vineyard for anyone who is seriously considering winegrape production in Vermont or surrounding regions. The course is guaranteed to run based on present enrollment, but won't be offered again until 2019. Tuesdays and Thursdays, 9:00 am - 3:45 PM June 20 - July 13, 2017 University of Vermont Horticulture Research & Education Center South Burlington, VT Information and registration<http://www.uvm.edu/~summer/course/201706/61819/summer- 2017/plant-soil-science/cold-climate-viticulture/> For more information contact Terence.Bradshaw@uvm.edu<mailto:Terence.Bradshaw@uvm.edu> Early season grapevine canopy management, Part II: Early leaf removal (ELR) By: Maria Smith and Dr. Michela Centinari, Dept. of Plant Science In the previous post, we discussed shoot thinning as a method to achieve vine balance and improve the canopy microclimate (Part I: Shoot Thinning). In this post, we will discuss the use early leaf removal (ELR), a canopy management practice implemented around bloom. ELR primarily serves to reduce the severity of Botrytis bunch rot infection in susceptible varieties (Wines and Vines: Benefits and Costs of Early Leaf Removal), but may also be an effective practice for reducing crop yield. ELR is currently considered an experimental canopy management practice for vineyards. While it shows great 1 of 7 6/6/17, 3:59 PM

promise within the research and Extension literature (1, 2, Cornell Cooperative Extension 2016), Penn State Extension does not currently recommend implementing ELR as a replacement for traditional methods (i.e., cluster thinning, fungicide sprays) for yield and rot control. However, growers curious about the effects of ELR may find it useful as a supplementary canopy management practice, especially for disease management and crop reduction. Throughout this post, we will discuss the effects of ELR on: Crop level in highly-fruitful varieties that produce a high number of clusters (3-4 per shoot) or large clusters such as vinifera cvs. Grüner Veltliner, Sangiovese, and Barbera. Botrytis bunch rot infection. Fruit and wine composition. What is Early Leaf Removal (ELR) and how does it work? ELR is the removal of basal leaves of the main shoots and, optionally, lateral shoots developed from the basal nodes (http://gph.is/2r3zlc0; Figure 1). ELR is typically performed shortly before (pre-bloom) or at the beginning of bloom (trace-bloom; Figure 2A). In some cases, however, it has been performed later during full-bloom or at the onset of fruit-set (Figure 2B). 2 of 7 6/6/17, 3:59 PM

Before and during bloom, the oldest basal leaves have a major role in providing carbohydrates (e.g., sugars) to support the growing shoot and inflorescence (i.e., flower clusters). In contrast, young leaves on the middle and top part of the shoot are still developing and not very photosynthetically active at this time (3). Literature suggests the removal of basal leaves at bloom may starve the inflorescence for a carbohydrates food source (4). The lack of carbohydrate resources reduces fruit-set (i.e., the percentage of flowers that will develop into berries), which likely reduces the number of berries per cluster at harvest (5). When ELR is performed later, at the onset of fruit-set, removing basal leaves may induce a reduction in berry size and an increase in berry abscission due to carbohydrate limitation at the onset of fruit development (6). Therefore, yield reduction achieved with ELR is the result of reduced cluster weight (reduced number of berries per cluster and/or reduced berry weight). In contrast, yield reduction achieved by cluster thinning is the result of a reduced number of clusters per vine. Why are ELR practices currently under research investigation? An increased number of studies is investigating the use of ELR as a potential alternative to cluster thinning techniques used for crop yield control in highly-fruitful wine grape varieties (5, 6, 7). As opposed to traditional cluster thinning, ELR can be more easily mechanized. (Author s note: for more information on mechanization, see Additional Resources at the bottom of the post.) ELR may additionally confer benefits such as: 1. Reduced severity of Botrytis rot infection Cluster compactness, or the tightness of berries on the cluster, has been positively related to the severity of Botrytis bunch rot infections (8). It is suggested that more compact clusters experience more rot. ELR decreases cluster compactness by reducing the number of berries per cluster and/or the berry size. Decreased cluster compactness through implementing ELR has reduced Botrytis rot infections in several tight-cluster varieties such as Pinot Noir, Riesling, Chardonnay, and Vignoles (1, 9, 10, 14). As an additional benefit, the removal of basal leaves increases sunlight penetration and air movement in the fruiting zone, which is important for improving spray penetration within the canopy (2016 Post Bloom Disease Management Review). 2. Improved fruit and wine composition ELR has consistently been reported to alter fruit composition, particularly for red Vitis vinifera varieties in Mediterranean climates (Tempranillo, Sangiovese, Barbera, etc.; 2, 5, 6, 12). In several instances, fruit harvested 3 of 7 6/6/17, 3:59 PM

from ELR vines had higher levels of total soluble solids (TSS, Brix), phenolic compounds (e.g., flavonols), and total anthocyanins compared to un-defoliated vines (2, 11, 12). ELR can also reduce methoxypyrazines, herbaceous aromas found in higher concentrations among immature grapes at harvest, and may contribute to improved wine color intensity (13). ELR may alter three important parameters associated with berry development and ripening (2): Decreased berry size Smaller berries tend to have greater skin-to-pulp ratio and higher concentrations of desirable phenolic and aroma compounds which are mainly present in the skin. Increased leaf area-to-yield ratio on a per shoot basis A greater leaf area-to-yield ratio may translate into higher sugar produced per shoot. More sugar availability could contribute to better fruit ripening. Improved canopy microclimate ELR, like traditional leaf removal, improves the microclimate of the fruiting zone through decreased leaf density and increased sunlight penetration to the fruit. Higher temperatures coupled with increased sunlight exposure in the fruiting zone can be especially important under cool or cloudy ripening conditions, as they may accelerate berry ripening, resulting in higher TSS, decreased malic acid, increased anthocyanin concentration, and degradation of green volatile aroma compounds such as methoxypyrazines that may mask fruity or floral aromas. Higher ultraviolet (UV) radiation in the fruiting zone in response to increased sunlight penetration may increase production of flavonols, as flavonols biologically act to protect berries from UV exposure (3, 11). Flavonol compounds along with anthocyanin influence red wine color and are used as determinants of quality in fruit (11). It is important to keep in mind that yield reduction is not desirable in all grape varieties. The use of ELR with varieties that do not typically over-crop may result in under-cropped situations with potential negative effects on fruit quality and vine health, in addition to unnecessary yield reductions and thus revenue loss. How many leaves should be removed to induce yield reduction? Unfortunately, there is no one size fits all number of leaves to remove when implementing ELR as a vineyard management practice. The required number of leaves removed to significantly reduce yield through reduced fruit-set depends on several factors, including shoot length and the shoot leaf area at the time of removal. For example, by pulling 5 basal leaves on a shoot with only 8 leaves at trace-bloom, we would remove about 63% of the total number of leaves. The percentage of leaf area removed would be even higher as the remaining leaves at the top of the shoot are much smaller than those removed from the bottom of the shoot. In contrast, a longer shoot with 15 leaves total will only lose 33% of the leaf area when 5 basal leaves are pulled. Thus, removing 5 leaves from a short shoot would have a more severe effect of depriving the inflorescence of sugar resources than removing the same number of leaves on long shoots (Figure 3). 4 of 7 6/6/17, 3:59 PM

Sometimes the degree of ELR is severe in order to induce a yield reduction commensurate with the more traditional cluster thinning technique. For example, Pinot Noir grown in southwestern Michigan showed a reduction in yield from 6.1 tons per acre in non-defoliated vines to 3.6 tons per acre when about half (8 out of 15) of the leaves on the shoots were removed (1). This was a 40% reduction in yield. Comparatively, when 4 or 6 leaves were removed from the Pinot Noir, no significant effect was found in crop yield (1). With the high potential for crop yield reduction, Dr. Michela Centinari s lab has been experimenting with ELR for the past two years. We have been examining the effects of ELR at trace-bloom on Grüner Veltliner (V. vinifera) grown in Central Pennsylvania. Grüner Veltliner is highly fruitful, typically producing 2-3 large clusters per shoot. In our experimental practices, we removed 5 basal leaves at trace-bloom. Our objective was to compare the use of ELR to cluster thinning for crop yield reduction. Our first year of data found that the implementation of ELR decreased yields by only about 15% (10.7 tons per acre in the non-defoliated control to 9.3 tons per acre in defoliated vines). In comparison, vines thinned to 1 cluster per shoot had a 45-50% reduction in yield compared to the un-thinned control (10.7 tons per acre to 6.5 tons per acre). This suggests that a greater leaf removal intensity may be needed for this variety to produce yield reduction comparable to cluster thinning, and we are currently testing different intensity levels of trace-bloom ELR to evaluate if the amount of leaf area removed correlates with reduction of fruit-set and yield at harvest. Again, ELR is still considered an experimental canopy management technique. For those growers growing high yielding varieties and looking to reduce crop level, cluster thinning is still the recommended practice. For more information on how to implement appropriate CT techniques, please see Cornell Cooperative Extension Fruit thinning in wine grapes and Crop thinning: cluster thinning or cluster removal. Considerations regarding ELR Other factors to consider if you are interested in applying ELR: Fruit-set percentage One of the factors facing the unpredictability of ELR is the weather conditions between bloom and fruit set. Since weather can have a large effect on the percentage of fruit-set (Fruit set in grapes 101), ELR may potentially exacerbate poor fruit-set if extended periods of wet, cool (< 59 F), 5 of 7 6/6/17, 3:59 PM

Summary overcast, or very hot (> 90 F) weather conditions occur following leaf removal. Additionally, berry sunburn may be a potential concern with ELR when performed under chronic high light and temperature intensity. Bud Fruitfulness While it is generally acknowledged that increased sunlight exposure is positive for bud development, a potential reduction in bud fruitfulness (number of clusters per shoot) may occur in the following season as a result of bud damage from ELR (14). Although still uncertain, bud damage may be the result of physical damage during leaf removal and/or reduction of carbohydrate supply during bud development. Carbohydrate Storage in Cool Climate Grown Vines Carbohydrates are the main energy source for grapevine growth, stress defense, and fruit ripening. Post-harvest carbohydrate storage in perennial tissues is a determinant of vine overwinter survival and is fundamental for shoot development in the following season. Removing leaves during ELR may alter the amount of carbohydrates produced by the leaves over the season and how carbohydrates are distributed among the vine organs. Currently, limited information is available on how ELR affects carbohydrates storage in perennial tissues and how this relates to dormant tissue (buds and canes) cold hardiness. This is a point of current interest to Centinari s lab at Penn State, with current research being conducted in vinifera and hybrid wine grape varieties. Crop Estimation Yield predictions based on ELR use is currently not available. In this regard cluster thinning is a more conservative approach. Unlike ELR, which is performed very early in the season, cluster thinning severity can be decided upon estimation of final yield. ELR holds potential as a way to reduce yield and Botrytis rot infection for some grape varieties grown in the Mid-Atlantic and other cool-climate regions. However, more research is needed to better understand the consistency of ELR practices on vine physiology, yield reductions, and fruit quality. Current efforts are on-going by the Centinari lab and Bryan Hed at the Lake Erie Grape Regional Extension Center (LEGREC) to evaluate the use of manual and mechanized ELR in hybrid and V. vinifera varieties across Pennsylvania. Additional Resources PSU Wines and Grapes blogs: An Overview of Cluster-Zone Leaf Removal Strategies for Cool Climate Vineyards and 2016 Post Bloom Disease Management Review Intrieri C, Filippetti I, Allegro G, et al. 2008. Early defoliation (hand vs mechanical) for improved crop control and grape composition in Sangiovese (Vitis vinifera L.). Aus. J. Grape Wine Res. doi: 10.1111/j.755-0238.2008.00004.x References Cited 1. Acimovic D, Tozzini L, Green A, et al. 2017. Identification of a defoliation severity threshold for changing fruitset, bunch morphology and fruit composition in Pinot Noir. J. Grape Wine Res. doi: 10.1111/ajgw.12235 2. Bubola M, Sivilotti P, Janjanin D, and Poni S. Early leaf removal has larger effect than cluster thinning on cv. Teran grape phenolic composition. AJEV. doi: 10.5344/ajev.2016.16071 3. Illand P, Dry P, Proffit P, and Tyerman S. Photosynthesis. In The Grapevine, from the science to the practice of growing vines for wine. pp. 91-107. 4. Coombe BG. The effect of removing leaves, flowers and shoot tips on fruit-set in Vitis vinifera L. J. Hortic. Sci. 37:1-15. 5. Poni S, Casalini L, Bernizzoni F, et al. 2006. Effects of early defoliation on shoot photosynthesis, yield components, and grape composition. AJEV. 57: 397-407. 6. Tardaguila J, Martinez de Toda F, Poni S, and Diago MP. 2010. Impact of early leaf removal on yield and fruit and wine composition of Vitis vinifera Graciano and Carignan. AJEV. 61(3):372-381. 7. Silvestroni O, Lanari V, Lattanzi T, et al. Impact of crop control strategies on performance of high-yielding Sangiovese grapevines. AJEV. doi: 10.5344/ajev.2016.15093 8. Vail ME and JJ Marois. 1991. Grape cluster architecture and the susceptibility of berries to Botrytis cinerea. Phytopathology 81:188-191. 9. Sternad Lemut M, Sivilotti P, Butinar L, et al. Pre-flowering leaf removal alters grape microbial population and offers good potential for a more sustainable and cost-effective management of a Pinot Noir vineyard. J. Grape Wine Res. doi: 10.1111/ajgw.12148 6 of 7 6/6/17, 3:59 PM

10. Hed B, Ngugi HK, and Travis JW. Short- and long-term effects of leaf removal and gibberellin on Chardonnay grapes in the Lake Erie region of Pennsylvania. AJEV. 66(1): 22-29. 11. Moreno D, Vilanova M, Gamero E, et al. Effects of preflowering leaf removal on phenolic composition of Tempranillo cv. in semi-arid terroir of western Spain. AJEV. doi: 10.5344/ajev.2014.14087 12. Risco D, Pérez D, Yeves A, et al. Early defoliation in a temperate warm and semi-arid Tempranillo vineyard: vine performance and grape composition. Aus J Grape and Wine Res. doi: 10.1111/ajgw.12049 13. Sivilotti P, Herrera JC, Lisjak K, et al. 2016. Impact of leaf removal, applied before and after flowering, on anthocyanin, tannin, and methoxypyrazine concentrations in Merlot (Vitis vinifera) grapes and wines. J. Agric. Food Chem. 64:4487-4496. 14. Sabbatini P, and Howell GS. 2010. Effects of early defoliation on yield, fruit composition, and harvest season cluster rot complex of grapevines. HortScience 45(12):1804-1808. Maria Smith is a viticulture PhD candidate with Dr. Michela Centinari in the Department of Plant Science. She specializes in cold stress physiology of wine grapes. She was the previous recipient of the John H. and Timothy R. Crouch Program Support Endowment, an endowment founded and funded by the Crouch brothers, original owners of Allegro Winery in Brogue, PA. She is currently funded by the Northeast Sustainable Agriculture Research and Education (NE-SARE) program, a program from the USDA National Institute of Food and Agriculture (NIFA). -- Sonia Schloemann UMass Extension Fruit Team 100 French Hall/UMass Amherst MA 01003 sgs@umext.umass.edu 7 of 7 6/6/17, 3:59 PM