Study of Moisture Content Dynamic of Fresh Palm Nuts during Drying

Similar documents
SELECTION OF AN IDEAL MESH SIZE FOR THE CRACKING UNIT OF A PALM KERNEL PROCESSING PLANT

A New Approach for Smoothing Soil Grain Size Curve Determined by Hydrometer

ANALYSIS OF THE EVOLUTION AND DISTRIBUTION OF MAIZE CULTIVATED AREA AND PRODUCTION IN ROMANIA

IMPACT OF RAINFALL AND TEMPERATURE ON TEA PRODUCTION IN UNDIVIDED SIVASAGAR DISTRICT

Buying Filberts On a Sample Basis

International Journal of Science, Environment and Technology, Vol. 6, No 1, 2017,

Processing Conditions on Performance of Manually Operated Tomato Slicer

Application of value chain to analyze harvesting method and milling efficiency in sugarcane processing

The Wild Bean Population: Estimating Population Size Using the Mark and Recapture Method

Department of Mechanical Engineering, Federal University of Agriculture, Abeokuta, NIGERIA 3

Evaluation of Soxtec System Operating Conditions for Surface Lipid Extraction from Rice

Chapter 3. Labor Productivity and Comparative Advantage: The Ricardian Model

Preview. Chapter 3. Labor Productivity and Comparative Advantage: The Ricardian Model

Supporing Information. Modelling the Atomic Arrangement of Amorphous 2D Silica: Analysis

F&N 453 Project Written Report. TITLE: Effect of wheat germ substituted for 10%, 20%, and 30% of all purpose flour by

RELATIVE EFFICIENCY OF ESTIMATES BASED ON PERCENTAGES OF MISSINGNESS USING THREE IMPUTATION NUMBERS IN MULTIPLE IMPUTATION ANALYSIS ABSTRACT

Parameters Effecting on Head Brown Rice Recovery and Energy Consumption of Rubber Roll and Stone Disk Dehusking

DESIGN AND FABRICATION OF ARECA NUT PROCESSING UNIT

Effect of SPT Hammer Energy Efficiency in the Bearing Capacity Evaluation in Sands

Chapter 3. Labor Productivity and Comparative Advantage: The Ricardian Model. Pearson Education Limited All rights reserved.

EXTRACTION OF PINEAPPLE LEAF FIBRE: JOSAPINE AND MORIS

Preview. Introduction (cont.) Introduction. Comparative Advantage and Opportunity Cost (cont.) Comparative Advantage and Opportunity Cost

Preview. Introduction. Chapter 3. Labor Productivity and Comparative Advantage: The Ricardian Model

DEVELOPMENT AND SENSORY EVALUATION OF READY-TO- COOK IDLI MIX FROM BROWNTOP MILLET (Panicum ramosa)

SOUTH AFRICA: ESTIMATES OF SUPPORT TO AGRICULTURE DEFINITIONS AND SOURCES

THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S.

Design of Conical Strainer and Analysis Using FEA

DEVELOPMENT AND STANDARDISATION OF FORMULATED BAKED PRODUCTS USING MILLETS

QUALITY CHARACTERISTICS OF CHEESE PRODUCED FROM THREE BREEDS OF CATTLE IN NIGERIA

Preview. Introduction. Chapter 3. Labor Productivity and Comparative Advantage: The Ricardian Model

Development of Value Added Products From Home-Grown Lychee

2. Materials and methods. 1. Introduction. Abstract

A Research on Traditionally Avilable Sugarcane Crushers

Level 2 Mathematics and Statistics, 2016

Investigation into the Thin Layer Drying Models of Nigerian Popcorn Varieties

Oil Palm Processing in Nigeria

The Effect of Almond Flour on Texture and Palatability of Chocolate Chip Cookies. Joclyn Wallace FN 453 Dr. Daniel

EFFECT OF TOMATO GENETIC VARIATION ON LYE PEELING EFFICACY TOMATO SOLUTIONS JIM AND ADAM DICK SUMMARY

Comparison of Supercritical Fluid Extraction with Steam Distillation for the Extraction of Bay Oil from Bay (Pimenta Racemosa) Leaves

HARVEST & POST-HARVEST PRACTICES. Harvest Fermentation Drying Micro-fermentation HARVESTING FERMENTATION

Effects of Different Packaging Materials on the Shelf Stability of Ginger Juice

Comparison of the OTAKE and SATAKE Rice Mills Performance on Milled Rice Quality

Preview. Introduction. Chapter 3. Labor Productivity and Comparative Advantage: The Ricardian Model

ANALYSIS OF CLIMATIC FACTORS IN CONNECTION WITH STRAWBERRY GENERATIVE BUD DEVELOPMENT

CARTHAMUS TINCTORIUS L., THE QUALITY OF SAFFLOWER SEEDS CULTIVATED IN ALBANIA.

Labor Supply of Married Couples in the Formal and Informal Sectors in Thailand

PRODUCTION AND EXPORT PERFORMANCE OF CARDAMOM IN INDIA

Vibration Damage to Kiwifruits during Road Transportation

Volume 30, Issue 1. Gender and firm-size: Evidence from Africa

Chapter 3: Labor Productivity and Comparative Advantage: The Ricardian Model

North America Ethyl Acetate Industry Outlook to Market Size, Company Share, Price Trends, Capacity Forecasts of All Active and Planned Plants

MATERIALS AND METHODS

INF.3 Proposal for a new UNECE Standard: Inshell Pecans

Development and Evaluation of Manually Operated Seed Broadcaster

Malting barley prices Basis FOB Swedish /Danish Port Oct 14/15/16/17/18

The supply and demand for oilseeds in South Africa

Test sheet preparation of pulps and filtrates from deinking processes

Effect of Rice Husk on Soil Properties

Measurement and Study of Soil ph and Conductivity in Grape Vineyards

Relation between Grape Wine Quality and Related Physicochemical Indexes

UTILIZATION OF SUNFLOWER AND SESAME SEEDS IN TAHINA AND HALAWA PROCESSING. A Thesis. Presented to Graduate School

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Rapid Tests for Edible Soybean Quality

ECONOMICS OF COCONUT PRODUCTS AN ANALYTICAL STUDY. Coconut is an important tree crop with diverse end-uses, grown in many states of India.

Certified Home Brewer Program. Minimum Certification Requirements

depend,: upon the temperature, the strain of

QUALITY, PRICING AND THE PERFORMANCE OF THE WHEAT INDUSTRY IN SOUTH AFRICA

Chile. Tree Nuts Annual. Almonds and Walnuts Annual Report

Journal of Chemical and Pharmaceutical Research, 2017, 9(9): Research Article

Sunflower seed COMMODITY PROFILE

Glutomatic System. Measure Gluten Quantity and Quality. Gluten Index: AACC/No ICC/No. 155&158 Wet Gluten Content: ICC/No.

Post harvest management practice in disposal of cashewnut

Instruction (Manual) Document

DESIGN AND CONSTRUCTION OF A YAM POUNDING MACHINE

Quality of western Canadian lentils 2012

Appendix A. Table A.1: Logit Estimates for Elasticities

Experimental Study of Partical Size and Solvent For Extraction of Oil From Kokum Seed

BEEF Effect of processing conditions on nutrient disappearance of cold-pressed and hexane-extracted camelina and carinata meals in vitro 1

Guidelines and Suggestions for Starting Maltsters

Comparative Analysis of Fresh and Dried Fish Consumption in Ondo State, Nigeria

Effects of Drying and Tempering Rice Using a Continuous Drying Procedure 1

PERFORMANCE OF HYBRID AND SYNTHETIC VARIETIES OF SUNFLOWER GROWN UNDER DIFFERENT LEVELS OF INPUT

Mastering Measurements

Notes on the Philadelphia Fed s Real-Time Data Set for Macroeconomists (RTDSM) Capacity Utilization. Last Updated: December 21, 2016

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP ( 1

Application Note: Analysis of Melamine in Milk (updated: 04/17/09) Product: DPX-CX (1 ml or 5 ml) Page 1 of 5 INTRODUCTION

International Trade CHAPTER 3: THE CLASSICAL WORL OF DAVID RICARDO AND COMPARATIVE ADVANTAGE

Quality of Canadian oilseed-type soybeans 2017

THE EFFECT OF ETHYLENE UPON RIPENING AND RESPIRATORY RATE OF AVOCADO FRUIT

COMPARISON OF CORE AND PEEL SAMPLING METHODS FOR DRY MATTER MEASUREMENT IN HASS AVOCADO FRUIT

Uniform Rules Update Final EIR APPENDIX 6 ASSUMPTIONS AND CALCULATIONS USED FOR ESTIMATING TRAFFIC VOLUMES

1/17/manufacturing-jobs-used-to-pay-really-well-notanymore-e/

Performance Analysis of Impeller and Rubber Roll Husker Using Different. Varieties of Rice

STUDY AND IMPROVEMENT FOR SLICE SMOOTHNESS IN SLICING MACHINE OF LOTUS ROOT

OF THE VARIOUS DECIDUOUS and

SHEA ROASTING IN A NUTSHELL. Brian Gylland (& Paul Means) Burn Design Lab ETHOS January 26-28, 2018

Global Cocoa Butter Equivalent (CBE) Market - Volume and Value Analysis By Type, By Region, By Country: Opportunities and Forecast ( )

Use of Lecithin in Sweet Goods: Cookies

Quality of Canadian non-food grade soybeans 2014

Product Consistency Comparison Study: Continuous Mixing & Batch Mixing

Transcription:

International Journal of Engineering Science Invention ISSN (nline): 2319 6734, ISSN (Print): 2319 6726 Volume 3 Issue 2ǁ February 2014 ǁ PP.19-23 Study of Moisture Content Dynamic of Fresh Palm Nuts during Drying rua. Antia 1,Kessington bahiagbon 2,Emmanuel Aluyor 3,Patrick Ebunilo 4 1 Department of Agricultural and Food Engineering, University of uyo, Akwa Ibom state, Nigeria. 2,3 Department of Chemical Engineering, University of Benin, Benin city, Edo State, Nigeria. 4 Department of Mechanical Engineering, University of Benin, Benin city, Edo State, Nigeria. ABSTRACT: Nut drying as a unit operation is cost intensive and requires energy intensity to achieve moisture content that would enhance effective nut cracking to yield whole kernels. Small Scale farmers mostly in the rural areas primarily employ open air drying method; as they are handicap with capital, technique and skill involved in modern methods of drying and determination of desired end moisture content. To develop cheap and easy approach in estimating any desired end moisture content; this paper attempts to establish and utilize the relationship, if any between moisture content and the ratio of initial of fresh nuts at time zero (M o ) to time dependent of nuts at any time t (M t ) when subjected to drying. In this study, fresh palm nut where classifies into three size ranges based on their geometric mean diameter. Each size range was subjected to drying in hot air convection oven; and M o /M t ratio recorded at various drying times until bone dry was achieved. The results reveal that irrespective of the size ranges of nuts, the M o /M t ratio is approximately the same at each drying time interval. The determinant moisture content corresponding to each drying time is approximately the same irrespective of the nuts size ranges. The empirical equations developed can be used in predicting the desired end moisture content. KEYWRDS: Fresh palm nuts, nut ratio, moisture content, drying. I. INTRDUCTIN il palm grows well in Africa, South Asia and America. In Nigeria, it is abundantly grown in Southern part and is mostly three varieties namely Dura, Tenera and Pisifera. The oil palm is straight branches trunk tree with leaves (frond) clustered at the top; and usually bear fruit. These fruits are oval in shape and have three major layers namely the outer epicarp, middle mesocarp; a breakable endocarp called shell. Palm oil is obtained from the fibrous mesocarp; while shell encloses the kernel(s) (Wood et a1., 1976; Hartley 1977). However, the shell thickness varies from 4mm to 8mm (Hartley, 1977, Purseglove, 1975; Zibokere, 1998; FA, 2009). The oil palm generally has numerous importances. Its frond could be used in locally made basket, broom, etc; the oil from the mesocarp and kernel could be used for manufacturing edible oil, margarine, soap etc; the palm kernel cake is used mainly for livestock production (Turner and Gillbank, 1974; Vaughan, 1976; Elaine, 1968) and the broken shells could be used in decorating apartment premises, packing material in distillation columns for alcohol and as fuel (FIRR, 1973; Koya et al., 2004) It is worthy to note that the kernel of the oil palm fruit, the extraction of which is sole reason for cracking, is grown for food and contains 48percent of oil and 9 percent of protein. The kernels are obtained from oil palm fruits after separation, drying and cracking of the shells. The cracking of nut is basically carried out by manual or mechanical method (Badmus, 1991; Illechie et al., 2005; Manuwa 1997; Sangwichien et al., 2010). Which ever method is applied for cracking, one of the most important things is that kernel released after cracking needs to be whole in order to be marketable. The critical parameters for good marketable kernel quality are that split kernel and foreign matter (broken shell) should not exceed 6 and 4 percent respectively (Turner and Gillbank, 1974). However, the release of whole kernel after cracking depends on factors such as the moisture content, shape and size of the nuts, operating conditions for cracking (Asoegwu,1995; koli, 2003; lakanmi, 2004; ke, 2007). The primary pre-requisite for cracking is the quantity of moisture content in the nut. The removal of liquid from solid by evaporation is referred to as drying. Industrially, drying is conducted by two basic methods viz; the indirect heat transfer method and the direct heat transfer method. Heat is supplied to the material to be dried by high frequency currents or by infrared light (ie.dielectric drying and radiant heat or infrared drying, respectively). According to Planovsky and Nikolaev (1990) all dryers in which the heat is required for drying is transferred to the wet material by conduction through a solid impermeable wall are indirect dryers and drying often falls into this group, and are the simplest of the indirect dryers. They are used when direct contact of the 19 Page

wet material with the drying medium can be objectionable. koli (2003) studied the effect of drying time and temperature on cracking, and found that the cracking effect is at peak in the forth week of air drying of nuts at 94 percent with whole kernel contributing 86 percent. He concluded that the importance of the result lays in the fact that small-scale palm fruit processors can now for certain know how long they would air dry their nuts to obtain effective nut cracking. By and large, since the tropics have dry and wet seasons, it therefore remains a problem to estimate effectively the open air drying time because in each season, the sun intensity changes on a daily basis; and especially in the wet season, the sun intensity changes with intermittent rain and in some days it rains throughout. Hence, effective open air drying time for fresh palm nuts is not likely to be generally the basis of weekly assessment especially in the wet season. This study aims at findings an effective way of estimating the desired end moisture content when fresh nuts are subjected to any method of drying. During open-air drying of nuts in the wet or dry season, it may be possible and more effective to determine when to stop drying of fresh nut by developing a practical empirical protocol anchored on the theory of drying. II. THERY Drying agricultural and food materials generally involves simultaneous application of heat and removal of moisture (water) from the material. Thus in drying of fresh palm nuts, the following assumptions can be made (1) Let M o = Initial of nuts at time zero (gram) M t = Time dependent of nut at time t (gram) t = Time (hr) M d = Bone dry of nut (gram) (2) Fresh agricultural and food materials of initial M o should have a certain percent of evaporable water that would be lost at a certain period. (3) The bone dry of fresh nut M d could therefore be expressed as a certain fraction (F) of initial of fresh nut FM M d (1) Initial Generally, moisture content (MC) wet basis (wb) = initial - Final M t MC ( wb ) 100 % (3) M - M t d (2) where, M t at time zero is equal to M o Initial Moisture content (MC) dry basis (db) = Final - Final (4) M M t d MC ( db ) 100 % (5) M d M MC ( wb ) 1 - F 100 % (6) M t Substitute equation 1 in equation 5 and rearrange MC 1 ( db ) 1 100 M F M t % (7) 20 Page

III. MATERIALS AND METHD Fresh palm nuts of a mixture of Tenera, Pisifera and Dura varieties were obtained from local palm oil processing mill and were immediately mopped with wet clean cloth and thereafter wrapped in a water-proof polythene bag. The nuts were classified on the basis of geometric mean diameter (GMD) into three size- ranges as follows: small size: (GMD) < 13mm; medium size: 13mm < GMD <20mm; large size: (GMD) > 20mm. In each size range, 200 nuts were randomly picked and each nut labeled before its initial (M o ) was weighed using an electronic weighing balance. The weighed nuts in each size range were subjected to drying in a hot air convection oven operated at 105 o C. Hence, a total of 600 nuts were involved in the test conducted. However, at four hourly intervals, each size range of nuts was removed from the dryer, cooled in a desiccator for 30 minutes. Thereafter, each nut (M t ) of each size range was determined, recorded and the M o /M t ratio calculated. The experiment was repeated until the of the palm nut was observed to have little or no change in i.e. at bone dry. Three sets of experiments were carried out, hence a total of 1800 fresh palm nuts were used. The M o /M t ratio obtained at each time was recorded for all the three size ranges of nuts classified in each set and were computed. The values were then used in obtaining standardized values of M t for time t = 0 up to the time when dry bone was achieved. The standardized values of M t were used in computing the moisture content of nuts at each recorded experimental drying time interval. Statistical analysis based on standardized values was carried out in order to obtain the value of F from equation 6 vis-a-vis the empirical equations 8 and 9. IV. RESULTS AND DISCUSSIN Table 1: M o /M t. ratio at 4 hourly interval of drying for fresh il Palm Nuts Average Values of M o/m t. Bulk average of M o/m t. GMD<13mm 13mm<GMD<20mm GMD>20mm 0 1.000 1.000 1.000 1.000 4 1.067(0.050) 1.066(0.051) 1.065(0.05) 1.066(0.050) 8 1.135(0.041) 1.137(0.038) 1.136(0.040) 1.136(0.040) 12 1.144(0.022) 1.148(0.030) 1.146(0.027) 1.146(0.018) 16 1.169(0.031) 1.167(0.039) 1.169(0.032) 1.168(0.034) 20 1.213(0.032) 1.214(0.038) 1.215(0.029) 1.214(0.033) 24 1.236(0.048) 1.240(0.039) 1.237(0.040) 1.238(0.041) Values in brackets are standard deviations These values represent the M o /M t average values for nuts subjected to drying per size range. The result showed that for each size range the M o /M t could be taken as being approximately the same at each drying time interval. Moreover, the values of each averaged M o /M t per size range per drying time interval were further averaged to obtain M o /M t values for bulk nuts per drying interval. The corresponding values of MC (wb) were found to also be approximately the same for each size ranges per drying time interval as seen in Tables 2. Table 2: Moisture content percentages at 4 - hourly interval of Drying time per M o /M t ratio for fresh palm nuts Times(hr) Averaged Values of MC (Wb %) Bulk Average GMD<13mm 13<GMD<20mm GMD>20mm MC (wb %) 0 19.11 19.35 19.16 19.21 4 13.69 14.04 13.92 13.88 8 8.20 8.38 8.17 8.25 12 7.47 7.42 7.36 7.42 16 5.44 5.88 5.50 5.61 20 1.88 2.10 1.78 1.92 24 0 0 0 0 The MC (wb %) for bulk nuts per drying time were also computed. Drying rate curved was obtained for each size range as seen in Figure 1. 21 Page

Figure 1: Rate of drying against drying of fresh oil palm nuts of classified size ranges The drying curved resembled an ideal drying curve. This implies that the experiment values obtain can be used for analysis to obtain imperial relations for predicting moisture content percentages wet basis for fresh nuts subjected to any method of dying. The experiment values of M o /M t in Table 3 shows that for a unit of fresh nut at dry bone, the initial of fresh nut at time zero is 1.238. Thus at each 4-hourly drying interval, standardized values could be obtained for M t, MC (wb %) and MC (db %) as shown in Table 3. Table 3: Fresh Nut variations with respect to moisture content percentage at 4-hourly drying time intervals. Time (hr) Experimental values of Mo / Mt for Bulk Nuts Standardized values from Experimental values Predicted values from empirical equations 6 and 7 M t (grams) MC (wb%) MC (db %) MC (wb %) MC (db%) 0 1.00 1.238 19.22 23.80 19.22 23.80 4 1.066 1.161 13.87 16.00 13.89 16.14 8 1.136 1.090 8.26 9.00 8.23 8.96 12 1.146 1.080 7.41 8.00 7.43 8.03 16 1.168 1.060 5.66 6.00 5.65 5.99 20 1.214 1.020 1.96 2.00 1.93 1.98 24 1.238 1.00 0 0 0 0 Least square statistical analysis was carried out based on equation 6 and Table 3 to obtain the value of F as 0.8078. These values was fitted into equation 6 to obtain equations 8 and 9 derived from basic theory of drying as highlighted in the theory section of the paper. The value of F is necessary to be obtained because the nut size varies but the value of F remains same irrespective of nut size. That is, the value of F is expected to be a constant for any particular fresh harvest material. The empirical equation for moisture content wet or dry basis is as follow: 22 Page

(a) M MC wb %) 100 80. 78 M t ( (8) (b) 1 MC ( db %) 123.8 100 M M t These equations were tested and analyzed to obtain a coefficient of determination r 2 of 0.974 and standard error of 1.96 percent. These values indicate that the equations are reliable and could be validly used. V. CNCLUSIN The empirical equations 8 and 9 relating M o /M t and moisture content percent (wet basis or dry basis) are valid and reliable as standard error in using the equation is about two percent. The bone dry of nut is (80.78 + 3.98) percent of the initial of nuts obtained from freshly harvested and processed palm fruits. An approximate moisture content of fresh nuts is (19.22 + 3.80) percent wet basis or (23.78 + 6.12) percent dry basis. The equation 8 and 9 could be applied only to fresh nut subjected to drying by any method and given conditions. Small-scale farmers that dry nuts in the sun whose temperature and intensity vary at all times and at all seasons could now know when to stop drying fresh nuts in order to obtain any desired end moisture content percent. This is done using equation 8 and 9 and substituting the M o /M t values obtained as drying progresses. When approximate desired end moisture content is obtained, the drying is discontinued. REFERENCES [1] Asoegwu, S. N. (1995). Some Physical Properties and Cracking Energy of Conophor Nuts at different Moisture Content. Int. Agric. Physic, 9, 131-142, [2] Badmus, G.A. (1991). NIFR Automated Small Scale il Palm Fruit Processing Equipment the need, Development and cost Effective. A Journal Publication of The Nigerian Institute For il Palm. [3] Elaine, M.M.A.(1968). Vegetable il and Fats their Production and Commercial Extraction. Unilever Educational booklet, London. [4] FA(2009).Small scale palm oil processing in Africa.FA Agricultural services Bulletin,148 pp 1-56. [5] FIRR (1973). Distillation Apparatus for Crude Alcohol. Technical Information Bulletin for Industry Vol. 2, No 1. pp2 [6] Hartley, C. W. S. (1977). The il Palm Longman Publisher, London. Pp1-334, 432-443. [7] Illechie, C.., Aibangbee, G. F., Amiolemhen; P. E., and gbiechi, S. R. (2005): Development of an Automatic Cracker Separator. Proceeding of the Nigerian Institute of Agricultural Energy Vol. 07, 295-297. [8] Koya..A; Idowu, A.and Faborode, M.. (24).Some properties of palm kernel and shell relevant in nut cracking and product separation.j.agric.eng.technol.12: 27-39. [9] Manuwa, S.I. (1977). Design, Fabrication and Testing of Low Cost Palm- Nut Cracker. Paper Presented at 19 th Annual Conference of the Nigeria Society of Agricultural Engineers at Federal University of Technology, werri, Nigeria 2 6 th September, 1997. [10] lakanmi,e. (2004).Development and performance testing of a palm kernel cracker. Compendium of Engineering Monographs.pp 1-3. [11] ke.p.k (2007).Development and performance evaluation of indigenous palm kernel dual processing machine. Journal of Engineering and Applied Science 2(4):701-705. [12] koli, J. U. (2003): ptimum Drying Time for Palm Nut for Efficient Nut Cracking in Small Scale il Palm Processing Mills. Global Journal of Engineering Research. Vol.2 (1 and 2): 7-10. [13] Planovsky, A. and Nikolaev, P. (1990). Unit perations and Equipments of Chemical Engineering. Mir Publishers, Moscow. PP.443-478 [14] Purseglove, J. W. (1975). Tropical Crop: Monocoty/-ledons. English Language Book Society and Longmans, London. pp 479-510. [15] Sangwichien, C., Ruangmee, A, and Sumanatrakul, P.(2010).Separation efficiency of oil palm shell and kernel mixture by using different types of media.proceeding of 2010 International Conference on Chemical Engineering and Applications. Singapore, 26-28 February,2010. [16] Vaughan, J. G (1970). The Structure and Utilization of il Seeds. Chapman and Hall, London, pp 188-93, 271-285. [17] Wood, B. J. Hardo, J., and Cobley, R. H. V. (1976). Development in Crop Science il Palm Research. Elsevier Scientific publishing company, Inc, Amsterdam. [18] Ziobokere, D. S. (1998). Some Physical Properties of Seed Nuts in Relation to Mechanical Denutting. Inc press. pp 78-79 (9) 23 Page