Alexis St-Gelais, M. Sc., chimiste

Similar documents
GC/MS BATCH NUMBER: F80104

CERTIFICATE OF ANALYSIS GC PROFILING

GC/MS BATCH NUMBER: F30105

CERTIFICATE OF ANALYSIS - GC PROFILING

GC/MS BATCH NUMBER: R40106

GC/MS BATCH NUMBER: R10104

GC/MS BATCH NUMBER: BH0102

GC/MS BATCH NUMBER: O50106

GC/MS BATCH NUMBER: EG0101

GC/MS BATCH NUMBER: TL0101

GC/MS BATCH NUMBER: CLO105

GC/MS BATCH NUMBER: L50109

GC/MS BATCH NUMBER: CL0106

GC/MS BATCH NUMBER: B50105

SAMPLE IDENTIFICATION ANALYSIS. Date : December 1, 2016

GC/MS BATCH NUMBER: Y50101

GC/MS BATCH NUMBER: CF0108

CERTIFICATE OF ANALYSIS - GC PROFILING

GC/MS BATCH NUMBER: CD0103

GC/MS BATCH NUMBER: CE0104

CERTIFICATE OF ANALYSIS - GC PROFILING

GC/MS BATCH NUMBER: LM0100

GC/MS BATCH NUMBER: P40106

GC/MS BATCH NUMBER: S40102

GC/MS BATCH NUMBER: S30103

GC/MS BATCH NUMBER: CC0104

GC/MS BATCH NUMBER: CF0106

GC/MS BATCH NUMBER: H90101

GC/MS BATCH NUMBER: H20103

GC/MS BATCH NUMBER: H20105

Customer: Hemp Traders Type: Oil Instrument: UPLC-PDA-MS Submitted: 06/20/17

Alexis St-Gelais, M. Sc., chimiste

GC/MS BATCH NUMBER: E10106

GC/MS BATCH NUMBER: L40103

GC/MS BATCH NUMBER: TL0103

GC/MS BATCH NUMBER: P40105

GC/MS BATCH NUMBER: SB5100

CERTIFICATE OF ANALYSIS - GC PROFILING

GC/MS BATCH NUMBER: PJ0100

CERTIFICATE OF ANALYSIS - GC PROFILING

CERTIFICATE OF ANALYSIS - GC PROFILING

GC/MS BATCH NUMBER: LU0100

GC/MS BATCH NUMBER: PJ0103

CERTIFICATE OF ANALYSIS - GC PROFILING

GC/MS BATCH NUMBER: CA0101

GC/MS BATCH NUMBER: PJ0102

CERTIFICATE OF ANALYSIS - GC PROFILING

CERTIFICATE OF ANALYSIS - GC PROFILING

Essential Validation Services

CERTIFICATE OF ANALYSIS - GC PROFILING

GC/MS BATCH NUMBER: G40105

GC/MS BATCH NUMBER: TK0105

GC/MS BATCH NUMBER: W10104

Essential Validation Services

Essential Validation Services

Essential Validation Services

Essential Validation Services

No adulterants, diluents, or contaminants were detected via this method.

No adulterants, diluents, or contaminants were detected via this method.

No adulterants, diluents, or contaminants were detected via this method. Conforms to 10/12 Iso Norms

No adulterants, diluents, or contaminants were detected via this method. Total Italidione level 4-5%.

Essential Validation Services

No adulterants, diluents, or contaminants were detected via this method. Conforms to ranges found in the literature. Extra caution should be taken

Juniperus communis var. kelleyi, a new variety from North America

Comparison of volatile oils of Juniperus coahuilensis in fresh seed cones vs. cones in fresh gray fox scat

Re-examination of the volatile leaf oils of Juniperus flaccida, J. martinezii, and J. poblana

Character Impact Odorants of Citrus Hallabong ([C. unshiu Marcov C. sinensis Osbeck] C. reticulata Blanco) Cold-pressed Peel Oil

CHEMOSYTEMATICS OF JUNIPERUS: EFFECTS OF LEAF DRYING ON ESSENTIAL OIL COMPOSITION III

GEOGRAPHIC VARIATION IN THE LEAF ESSENTIAL OILS OF JUNIPERUS GRANDIS (CUPRESSACEAE) II. ABSTRACT

CHEMOSYTEMATICS OF JUNIPERUS: EFFECTS OF LEAF DRYING ON ESSENTIAL OIL COMPOSITION II ABSTRACT

Geographic variation in volatile leaf oils (terpenes) in natural populations of Helianthus annuus (Asteraceae, Sunflowers)

Composition of the essential oils of Pinus nigra Arnold from Turkey

The volatile leaf oils of three Juniperus communis varieties from Bulgaria

Research Article Chemical Composition of Essential Oil from the Peel of Chinese Torreya grandis Fort

Extraction of Essential Oil from Citrus junos Peel using Supercritical Carbon Dioxide

Chemical and Aroma Profiles of Yuzu (Citrus junos) Peel Oils of Different Cultivars

GEOGRAPHIC VARIATION IN THE LEAF ESSENTIAL OILS OF JUNIPERUS OSTEOSPERMA (CUPRESSACEAE) II.

THE BREWING VALUE OF HOPS HOP & BREW SCHOOL A UG 29 S EPT 1, 2017, Y AKIMA

Essential Oils of Phoebe angustifolia Meisn., Machilus velutina Champ. ex Benth. and Neolitsea polycarpa Liou (Lauraceae) from Vietnam #

Volatile constituents of cultivated Origanum vulgare L. inflorescences and leaves

2014 Maxwell Scientific Publication Corp. Submitted: December 18, 2013 Accepted: December 28, 2013 Published: June 10, 2014

Comparison of leaf components of sweet orange and sour orange (Citrus sp.)

Research Article Essential Oil Composition of Pinus peuce Griseb. Needles and Twigs from Two National Parks of Kosovo

Alphonso is the most popular and most exported mango [Mangifera indica L.

Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Bloco A, Ilha do Fundão, Rio de Janeiro-RJ, Brazil

T. Praet, F. van Opstaele, B. de Causmaecker, G. Bellaio, G. de Rouck, G. Aerts and L. de Cooman

The effects of rootstock on the flower components of Clementine Mandarin (Citrus clementina)

Comparison of Peel Components of Sweet lime (Citrus limetta Risso) Obtained using Cold-press and Hydrodistillation Method

Influence of Rootstock on Essential Oil Composition of Mandarins

Brittany M. Xu, George L. Baker, Paul J. Sarnoski, and Renée M. Goodrich-Schneider

Leaf Volatile Compounds of Seven Citrus Somatic Tetraploid Hybrids Sharing Willow Leaf Mandarin (Citrus deliciosa Ten.) as Their Common Parent

Comparative investigation of the sweet and bitter orange essential oil (Citrus sinensis and Citrus aurantium)

High concrete and ester containing Jasmine species (Jasminum malabaricum Wight)

Free and Bound Volatile Compounds in Juice and Peel of Eureka Lemon

Safety Assessment of Citrus Flower- and Leaf-Derived Ingredients as Used in Cosmetics

Comparison of intensely sweet volatile leaf oils of Lippia dulcis (Verbenaceae) with low and high camphor from Brazil and Mexico

Natural Aroma Chemicals

Chemical Composition of Leaf and Seed Oils of Dryobalanops aromatica Gaertn. (Dipterocarpaceae)

Correspondence should be addressed to Khalijah Awang;

Natural Aroma Chemicals

Transcription:

Date : January 16, 2018 SAMPLE IDENTIFICATION Internal code : 18A12-HBN2-1-CC Customer identification : Frankincense Oil Carterii - #Lot: HBNO-170004420 Type : Essential oil Source : Boswellia carterii Customer : Health & Beauty Natural Oils ANALYSIS Method : PC-PA-001-15E06, "Analysis of the composition of a liquid essential oil by GC-FID" (in French). Identifications double-checked by GC-MS Analyst : Sylvain Mercier, M. Sc., chimiste Analysis date : 2018-01-15 Checked and approved by : Alexis St-Gelais, M. Sc., chimiste 2013-174 Note: This report may not be published, including online, without the written consent from Laboratoire PhytoChemia. This report is digitally signed, it is only considered valid if the digital signature is intact. Page 1 of 6

IDENTIFIED COMPOUNDS Identification Column: BP5 Column: WAX R.T. R.I. % % R.I. R.T. Molecular Class Toluene 1.32 759 0.06 45.72 957 1.08* Simple phenolic Unknown (m/z = 79, 78 (45), 91 (35), 77 (24)...) 1.99 826 0.02 Tricyclene 3.22* 915 0.26 0.11 915 0.94 Monoterpene Hashishene 3.22* 915 [0.26] [45.72] 957 1.08* Monoterpene α-thujene 3.33 921 2.93 3.23 962 1.10 Monoterpene α-pinene 3.50 931 45.69 [45.72] 957 1.08* Monoterpene Unknown (m/z = 91, 92 3.67 941 0.03 0.02 1068 1.85 Monoterpene (49), 65 (12)... 134? (2)) α-fenchene 3.70 943 0.08 0.12 985 1.24 Monoterpene Camphene 3.73 944 1.51 1.48 993 1.29 Monoterpene Thuja-2,4(10)-diene 3.82 950 0.47 3.29 1059 1.78* Monoterpene Sabinene 4.16 970 3.05 [3.29] 1059 1.78* Monoterpene β-pinene 4.23 974 4.31 4.32 1039 1.63 Monoterpene Myrcene 4.51 990 3.89 4.03 1113 2.32* Monoterpene Pseudolimonene 4.72 1002 0.19 [4.03] 1113 2.32* Monoterpene Δ3-Carene 4.79* 1006 3.50 1.38 1090 2.05 Monoterpene α-phellandrene 4.79* 1006 [3.50] 1.99 1105 2.22 Monoterpene Octanal 4.87 1010 0.03 0.02 1234 3.87 Aliphatic aldehyde α-terpinene 4.96 1016 0.55 0.53 1118 2.38 Monoterpene Limonene 5.25* 1031 22.11 17.80 1141 2.66 Monoterpene para-cymene 5.25* 1031 [22.11] 4.19 1207 3.49 Monoterpene β-phellandrene 5.26 1032 0.15 0.32 1144 2.69 Monoterpene cis-β-ocimene 5.37 1038 0.04 0.51 1181 3.19* Monoterpene trans-β-ocimene 5.55 1048 0.02 0.02 1199 3.37 Monoterpene γ-terpinene 5.74 1058 0.47 [0.51] 1181 3.19* Monoterpene cis-sabinene hydrate 6.08 1076 0.02 0.11 1410 6.56* Monoterp. alcohol Terpinolene 6.22* 1084 0.22 0.19 1219 3.65 Monoterpene Octanol 6.22* 1084 [0.22] 0.05 1503 8.59 Aliphatic alcohol para-cymenene 6.45 1096 0.25 0.23 1365 5.80 Monoterpene Perillene 6.63 1103 0.01 0.02 1348 5.54 Monoterp. ether Linalool 6.73 1107 0.08 0.06 1495 8.35 Monoterp. alcohol β-thujone 7.03 1118 0.03 0.02 1370 5.88 Monoterp. ketone α-campholenal 7.29 1127 0.16 Monoterp. aldehyde trans-pinocarveol 7.65 1140 0.38 0.38 1567 10.67 Monoterp. alcohol trans-para-menth-2-en-1-ol 7.79 1145 0.02 0.02 1561 10.48 Monoterp. alcohol trans-verbenol 7.86 1148 0.12 0.12 1608 12.25 Monoterp. alcohol α-phellandren-8-ol analog 8.02 1153 0.18 Monoterp. alcohol Pinocarvone 8.17 1159 0.07 0.05 1472 7.82 Monoterp. ketone meta-mentha-4,6-dien-8-ol 8.25 1162 0.13 Monoterp. alcohol Borneol 8.70 1178 0.03 0.01 1614 12.53 Monoterp. alcohol Page 2 of 6

α-phellandren-8-ol 8.80 1182 0.33 Monoterp. alcohol Terpinen-4-ol 8.85 1184 0.49 0.68 1524 9.29* Monoterp. alcohol para-cymen-8-ol 9.23 1197 0.08 0.14 1764 20.64 Monoterp. alcohol Myrtenal 9.36 1200 0.17 [0.68] 1524 9.29* Monoterp. aldehyde Myrtenol 9.45 1202 0.13 0.13 1702 16.83 Monoterp. alcohol α-terpineol 9.54 1204 0.34 0.26 1620 12.78 Monoterp. alcohol α-phellandrene epoxide 9.81 1210 0.05 0.05 1720 17.90 Monoterpene Verbenone 9.86 1211 0.35 0.34 1596 11.66 Monoterp. ketone Octyl acetate 9.96 1213 0.22 0.20 1417 6.70 Aliphatic ester Methyl decyl ether 10.41 1223 0.12 0.10 1312 5.01 Aliphatic ether trans-carveol 10.55 1226 0.12 0.13 1750 19.79 Monoterp. alcohol Methyl (E)-2-decenyl ether 11.45 1246 0.18 Aliphatic ether 3,5-Dimethoxytoluene 12.67 1273 0.02 Simple pheonlic Bornyl acetate 12.95 1279 0.23 0.20 1499 8.47 Monoterp. ester Methyl undecyl ether 15.68 1326 0.06 0.05 1422 6.81 Aliphatic ether α-cubebene 16.04 1331 0.04 [0.11] 1410 6.56* Sesquiterpene α-copaene 17.77 1357 0.23 0.25 1420 6.76 Sesquiterpene β-bourbonene 18.20 1364 0.07 0.08 1457 7.52 Sesquiterpene β-elemene 19.02 1376 0.17 0.17 1512 8.89 Sesquiterpene Geranyl acetate 19.42 1382 0.01 0.01 1688 16.00 Monoterp. ester α-gurjunene 19.74 1387 0.01 0.02 1465 7.68 Sesquiterpene β-caryophyllene 20.71 1401 1.09 1.09 1509 8.79 Sesquiterpene trans-α-bergamotene 22.24 1419 0.07 [0.68] 1524 9.29* Sesquiterpene 6,9-Guaiadiene 22.65 1424 0.02 0.02 1540 9.78 Sesquiterpene α-humulene 23.50 1434 0.18 0.18 1589 11.36 Sesquiterpene allo-aromadendrene 23.74 1437 0.04 0.06 1548 10.04 Sesquiterpene trans-cadina-1(6),4-diene 25.17 1454 0.04 0.05 1593 11.51 Sesquiterpene γ-muurolene 25.58 1459 0.09 0.06 1601 11.92 Sesquiterpene Germacrene D 25.71 1460 0.05 0.07 1612 12.41 Sesquiterpene β-selinene 26.35 1468 0.09 0.12 1625 13.03 Sesquiterpene α-selinene 26.99 1475 0.06 0.05 1631 13.31 Sesquiterpene α-muurolene 27.77 1485 0.04 0.03 1641 13.80 Sesquiterpene γ-cadinene 28.83 1497 0.15 0.16 1654 14.38 Sesquiterpene δ-cadinene 29.47 1506 0.31 0.28 1660 14.68 Sesquiterpene α-elemol 32.77 1553 0.02 0.02 1993 35.52 Sesquiterp. alcohol Caryophyllene oxide 33.92 1569 0.31 0.28 1833 25.38 Sesquiterp. ether Viridiflorol 34.95 1584 0.29 0.27 1967 34.01 Sesquiterp. alcohol τ-cadinol 37.64 1639 0.22 0.24 2058 37.81 Sesquiterp. alcohol τ-muurolol 37.74 1642 0.02 0.02 2087 38.83 Sesquiterp. alcohol α-muurolol 37.87 1645 0.02 0.02 2097 39.12 Sesquiterp. alcohol β-eudesmol 37.97 1648 0.03 0.04 2106 39.35 Sesquiterp. alcohol α-cadinol 38.19 1653 0.05 0.05 2122 39.79 Sesquiterp. alcohol Dimer of α-phellandrene II 42.38 1772 0.03 0.02 1841 25.90 Diterpene (3E)-Cembrene A 46.74 1930 0.02 0.02 2130 40.03* Diterpene Page 3 of 6

meta-camphorene 46.98 1940 0.01 [0.02] 2130 40.03* Diterpene Serratol 51.52* 2133 0.19 0.16 2559 49.63 Diterp. alcohol Incensole 51.52* 2133 [0.19] 0.04 2684 51.99 Diterp. alcohol Total identified 97.87% 96.48% *: Two or more compounds are coeluting on this column [xx]: Duplicate percentage due to coelutions, not taken account in the identified total Note: no correction factor was applied OTHER DATA Physical aspect : Faintly yellow liquid Refractive index : 1.4710 ± 0.0003 (20 C) CONCLUSION No adulterant, contaminant or diluent were detected using this method. As specific test conducted for the determination of fatty acids methyl esters after derivatization did not reveal any significant presence of a vegetable oil. Page 4 of 6

Page 5 of 6

Page 6 of 6